【題目】某工廠生產(chǎn)一種產(chǎn)品,根據(jù)預(yù)測可知,該產(chǎn)品的產(chǎn)量平穩(wěn)增長,記2015年為第1年,第x年與年產(chǎn)量(萬件)之間的關(guān)系如下表所示:
x | 1 | 2 | 3 | 4 |
4.00 | 5.52 | 7.00 | 8.49 |
現(xiàn)有三種函數(shù)模型:,,
(1)找出你認為最適合的函數(shù)模型,并說明理由,然后選取這兩年的數(shù)據(jù)求出相應(yīng)的函數(shù)解析式;
(2)因受市場環(huán)境的影響,2020年的年產(chǎn)量估計要比預(yù)計減少30%,試根據(jù)所建立的函數(shù)模型,估計2020年的年產(chǎn)量.
【答案】(1)模型為較好,理由見解析,相應(yīng)的函數(shù)為(2)8.05萬件
【解析】
(1)根據(jù)單調(diào)性排除,檢驗,發(fā)現(xiàn)數(shù)據(jù)差距比較大,選擇數(shù)據(jù)差距較;
(2)根據(jù)(1)計算出的模型方程計算即可得解.
解:(1)符合條件的函數(shù)模型是
若模型為,
由已知得,∴,,
∴
所以,,與已知差距較大;
若模型為,為減函數(shù),與已知不符;
若模型為,由,
∴,,
∴,所以,,與已知符合較好.
所以相應(yīng)的函數(shù)為
(2)2020年預(yù)計年產(chǎn)量為
,所以2020年產(chǎn)量應(yīng)為8.05萬件
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足.
(1)求的解析式;
(2)若在上單調(diào),求的取值范圍;
(3)設(shè)( 且a≠1),(且),當時,有最大值14,試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義域為R的奇函數(shù)(a為實數(shù))
(1)求a的值;
(2)判斷的單調(diào)性(不必證明),并求出的值域;
(3)若對任意的,不等式恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(a>0)是定義在R上的偶函數(shù),
(1)求實數(shù)a的值;
(2)判斷并證明函數(shù)在的單調(diào)性;
(3)若關(guān)于的不等式的解集為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓上的動點,點是在軸上的投影, 為上一點,且.
(1)當在圓上運動時,求點的軌跡的方程;
(2)求過點且斜率為的直線被所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x元.根據(jù)市場調(diào)查,須有,,,同時日銷售量m(單位:個)與成正比.當每個工藝品的銷售單價為29元時,日銷售量為1000個.
(1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;
(2)當每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)與的圖象在上有且只有一個公共點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且其中一個焦點的坐標為.
(1)求橢圓的方程;
(2)過橢圓右焦點的直線與橢圓交于兩點,在軸上是否存在點,使得為定值?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com