設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,Sn=nan-n(n-1).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿(mǎn)足:an=
b1
3+1
+
b2
3×2+1
+
b3
3×3+1
+…+
bn
3n+1
,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)令cn=
anbn
4
(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn
分析:(I)由題意已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=nan-n(n-1),已知前n項(xiàng)和求通項(xiàng);
(II)在(I)中求出數(shù)列an的通項(xiàng),利用列項(xiàng)相消法求解即可.
(III)利用(I)(II)得出cn=
a nb n
4
=
2n•2(3n+1)
4
=3n2+n,再利用正整數(shù)的平方和公式及等差數(shù)列的求和公式求解即得.
解答:解:(I)n≥2時(shí),Sn=nan-n(n-1),
∴Sn-1=(n-1)an-1-(n-1)(n-2),
兩式相減得an=nan-(n-1)an-1-2(n-1),則(n-1)an=(n-1)an-1+2(n-1),
∴an=an-1+2
∴{an}是首項(xiàng)為2,公差為2的等差數(shù)列,
∴an=2n;
(II)∵an=
b 1
3+1
+
b 2
3×2+1
+
b 3
3×3+1
+…+
bn
3n+1

∴an-1=
b 1
3+1
+
b 2
3×2+1
+
b 3
3×3+1
+…+
b n-1
3(n-1)+1
,
∴當(dāng)n≥2時(shí),有an-an-1=
b n
3n+1

由(I)得an-an-1=2,
∴bn=2(3n+1),
而當(dāng)n=1時(shí),也成立,
∴數(shù)列{bn}的通項(xiàng)公式bn=2(3n+1)(n∈N*),
(III)cn=
a nb n
4
=
2n•2(3n+1)
4
=3n2+n,
∴數(shù)列{cn}的前n項(xiàng)和Tn=3(12+22+32+…+n2)+(1+2+3+…+n)
=3×
1
6
n(n+1)(2n+1)+
1
2
n(n+1)
=
1
6
n(n+1)(4n+5).
點(diǎn)評(píng):此題考查了數(shù)列遞推式、等差數(shù)列、已知數(shù)列的前n項(xiàng)和求其通項(xiàng),還考查了公式法求出數(shù)列的前n項(xiàng)的和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫(xiě)出an+1與an的關(guān)系(只需給出結(jié)果,不需要過(guò)程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案