分析:(I)由題意已知數(shù)列{a
n}的前n項和為S
n,且a
1=1,S
n=na
n-n(n-1),已知前n項和求通項;
(II)在(I)中求出數(shù)列a
n的通項,利用列項相消法求解即可.
(III)利用(I)(II)得出c
n=
=
=3n
2+n,再利用正整數(shù)的平方和公式及等差數(shù)列的求和公式求解即得.
解答:解:(I)n≥2時,S
n=na
n-n(n-1),
∴S
n-1=(n-1)a
n-1-(n-1)(n-2),
兩式相減得a
n=na
n-(n-1)a
n-1-2(n-1),則(n-1)a
n=(n-1)a
n-1+2(n-1),
∴a
n=a
n-1+2
∴{a
n}是首項為2,公差為2的等差數(shù)列,
∴a
n=2n;
(II)∵a
n=
+
+
+…+
,
∴a
n-1=
+
+
+…+
,
∴當n≥2時,有a
n-a
n-1=
,
由(I)得a
n-a
n-1=2,
∴b
n=2(3n+1),
而當n=1時,也成立,
∴數(shù)列{b
n}的通項公式b
n=2(3n+1)(n∈N
*),
(III)c
n=
=
=3n
2+n,
∴數(shù)列{c
n}的前n項和T
n=3(1
2+2
2+3
2+…+n
2)+(1+2+3+…+n)
=3×
n(n+1)(2n+1)+
n(n+1)
=
n(n+1)(4n+5).
點評:此題考查了數(shù)列遞推式、等差數(shù)列、已知數(shù)列的前n項和求其通項,還考查了公式法求出數(shù)列的前n項的和.