六個(gè)人站成一排照相,其中甲乙一定不能站在一起的排法種數(shù)有
 
種.
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問題
專題:排列組合
分析:先排其余4名同學(xué),再把甲、乙插到剛才產(chǎn)生的5個(gè)空位中,由分步計(jì)數(shù)原理可得.
解答: 解:插空法,先排其余4名同學(xué)共
A
4
4
=24中方法,
再把甲、乙插到剛才產(chǎn)生的5個(gè)空位中
A
2
5
=20種方法,
由分步計(jì)數(shù)原理知總的方法種數(shù)為:24×20=480,
故答案為:480.
點(diǎn)評(píng):本題考查排列組合及簡(jiǎn)單的計(jì)數(shù)問題,插空法是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱BC,CC1的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一點(diǎn),若A1P∥平面AEF,則線段A1P長(zhǎng)度的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1,O是底面AB、CD的交點(diǎn).
(1)求異面直線D1A與C1O所成的角;
(2)求證:面AA1C1C垂直于面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓的方程為x2+y2-6x-8y=0.設(shè)該圓過點(diǎn)(-1,4)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為(  )
A、15B、30C、45D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖直四棱柱ABCD-A1B1C1D1中側(cè)棱AA1=
6
,底面ABCD是棱形,AB=2,∠ABC=60°,P是側(cè)棱BB1的一個(gè)動(dòng)點(diǎn).若點(diǎn)P是BB1的中點(diǎn),求三棱錐P-ACD1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2lnx+
1
2
ax2
-(2a+1)x(a>0)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)在(0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-x+log2
1-x
1+x

(1)求f(
1
2014
)+f(-
1
2014
)的值;
(2)當(dāng)x∈(-a,a](其中a∈(-1,1)且a為常數(shù))時(shí),f(x)是否存在最小值?如果存在,求函數(shù)最小值;若果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足
3(x-3)3+2x-sin(x-3)=9
3(y-3)3+2y-sin(y-3)=3
,則x+y=( 。
A、0B、3C、6D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(4π+α)=
2
sinβ,
3
cos(6π+α)=
2
cos(2π+β),且0<α<π,0<β<π,求α和β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案