(本題8分)已知直線l1:2x-y+2=0與l2:x+2y-4=0,點P(1, m).
(Ⅰ)若點P到直線l1, l2的距離相等,求實數(shù)m的值;
(Ⅱ)當m=1時,已知直線l經(jīng)過點P且分別與l1, l2相交于A, B兩點,若P恰好
平分線段AB,求A, B兩點的坐標及直線l的方程.
(Ⅰ)m=-1或m=; (Ⅱ)x+7y-8=0。
【解析】(I)根據(jù)點到直線的距離公式建立關于m的方程,求出m的值.
(II)設A(a, 2a+2), B(4-2b, b),因為P(1,1)為AB的中點,根據(jù)中點坐標公式可得關于a,b的方程,解出a,b的值.所以可得A、B的坐標,進而得到直線l的方程.
(Ⅰ)由題意得,…………………………………1分
解得m=-1或m=;………………………………………………2分
(Ⅱ)設A(a, 2a+2), B(4-2b, b),則
解得,………………………………2分
∴,∴,……………………2分
∴l(xiāng):,即x+7y-8=0………………………………1分
科目:高中數(shù)學 來源: 題型:
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)已知直線:=+>0交拋物線C:=2>0于A、B兩點,M是線段AB的中點,過M作軸的垂線交C于點N.
(1)若直線過拋物線C的焦點,且垂直于拋物線C的對稱軸,試用表示|AB|;
(2)證明:過點N且與AB平行的直線和拋物線C有且僅有一個公共點;
(3)是否存在實數(shù),使=0.若存在,求出的所有值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設=, =,且滿足.
(1) 求點的軌跡方程;
(2) 過點的直線交上述軌跡于兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年東北師大附中高二下學期期中考試文科數(shù)學 題型:解答題
(本題8分)
已知直線(為參數(shù)),圓(為參數(shù)).
(Ⅰ)當時,試判斷直線與圓的位置關系;
(Ⅱ)若直線與圓截得的弦長為1,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題8分)
已知函數(shù)在處取得極值,并且它的圖象與直線在點處相切.
(1)求函數(shù)的解析式;
(2)過點是否存在另一條與曲線相切的直線.若存在,則求出此切線的方程;若不存在,則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com