各項均為正數(shù)的數(shù)列{an}滿足對一切正整數(shù)n,都有an+22=anan+4,若a3=2,a7=4,則a15=


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    64
B
分析:各項均為正數(shù)的數(shù)列{an}中,由an+22=anan+4,得到,由利用a3=2,a7=4,先求出.再由和a7=4,求出.以此類推,由遞推思想能夠求出a15=16.
解答:各項均為正數(shù)的數(shù)列{an}中,
∵an+22=anan+4,
,
∵a3=2,a7=4,

解得a52=8,即
,
∴2a9=16,
解得

∴4a11=32,
解得a11=8.

,
解得,
,
∴8a15=128,
解得a15=16.
故選B.
點評:本題考查數(shù)列的遞推公式的應用,是基礎題.解題時要認真審題,注意遞推思想的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設單調(diào)遞增函數(shù)f(x)的定義域為(0,+∞),且對任意的正實數(shù)x,y有f(xy)=f(x)+f(y),且f(
1
2
)=-1

(1)一個各項均為正數(shù)的數(shù)列{an}滿足:f(sn)=f(an)+f(an+1)-1其中Sn為數(shù)列{an}的前n項和,求數(shù)列{an}的通項公式;
(2)在(1)的條件下,是否存在正數(shù)M使下列不等式:2n•a1a2…an≥M
2n+1
(2a1-1)(2a2-1)…(2an-1)
對一切n∈N*成立?若存在,求出M的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

各項均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,對任意n∈N,有2Sn=2p
a
2
n
+pan-p(p∈R).
(1)求常數(shù)p的值;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且Sn,an
1
2
成等差數(shù)列,
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項公式;
(3)若bn=4-2n(n∈N*),設cn=
bn
an
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且點(an,Sn)在函數(shù)y=
1
2
x2+
1
2
x-3
的圖象上,
(1)求數(shù)列{an}的通項公式;
(2)記bn=nan(n∈N*),求證:
1
b1
+
1
b2
+…+
1
bn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•長寧區(qū)二模)已知各項均為正數(shù)的數(shù)列{an}的前n項和sn滿足s1>1,且6sn=(an+1)(an+2)(n為正整數(shù)).
(1)求{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=
an,n為偶數(shù)
2an,n為奇數(shù)
,求Tn=b1+b2+…+bn;
(3)設Cn=
bn+1
bn
,(n為正整數(shù))
,問是否存在正整數(shù)N,使得n>N時恒有Cn>2008成立?若存在,請求出所有N的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案