分析 (Ⅰ)利用橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,且經過點(0,1),列出方程組求解a,b即可.
(Ⅱ)設MP,NQ所在直線方程分別為y=-x+m,y=x+n,N(x1,y1),Q(x2,y2),NQ中點P(x0,y0).利用直線與橢圓聯(lián)立方程組,利用判別式以及韋達定理,通過兩點間距離公式,求出四邊形面積表達式,利用0≤n2<4,所以0≤m2<1.求解四邊形MNPQ面積的最大值.
解答 (本題滿分8分)
解:(Ⅰ)根據(jù)題意得,$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ b=1\\{a^2}={b^2}+{c^2}.\end{array}\right.$解得$a=\sqrt{3}$.
所求橢圓方程為$\frac{x^2}{3}+{y^2}=1$.…(3分)
(Ⅱ)因為MN=MQ,PN=PQ,所以對角線MP垂直平分線段NQ.
設MP,NQ所在直線方程分別為y=-x+m,y=x+n,N(x1,y1),Q(x2,y2),NQ中點P(x0,y0).
由$\left\{\begin{array}{l}{x^2}+3{y^2}=3\\ y=x+n\end{array}\right.$得4x2+6nx+3n2-3=0.
令△=48-12n2>0,得n2<4.${x_1}+{x_2}=-\frac{3n}{2}$,${x_1}{x_2}=\frac{{3{n^2}-3}}{4}$.
則$|NQ|=\sqrt{{{({x_1}-{x_2})}^2}+{{({y_1}-{y_2})}^2}}=\frac{{\sqrt{6(4-{n^2})}}}{2}$.
同理$|MP|=\frac{{\sqrt{6(4-{m^2})}}}{2}$.
所以${S_{四邊形MNPQ}}=\frac{1}{2}|MP||NQ|=\frac{{3\sqrt{(4-{m^2})(4-{n^2})}}}{4}$.
又因為${x_0}=\frac{{{x_1}+{x_2}}}{2}=-\frac{3}{4}n$,所以NQ中點$P(-\frac{3}{4}n,\frac{1}{4}n)$.
由點A在直線MP上,得n=-2m,
所以${S_{四邊形MNPQ}}=\frac{1}{2}|MP||NQ|=\frac{{3\sqrt{(4-{m^2})(1-{m^2})}}}{2}$.
因為0≤n2<4,所以0≤m2<1.
所以當m=0時,四邊形MNPQ面積的最大值為3.…(8分)
點評 本題考查橢圓的簡單性質,橢圓方程的求法,直線與橢圓的位置關系的應用,考查轉化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
分數(shù) | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 20 | 10 | 40 | 10 | 20 |
A. | 3 | B. | 2.5 | C. | 3.5 | D. | 2.75 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | (-∞,1] | C. | (-∞,2] | D. | (-∞,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com