已知實(shí)數(shù)x,y滿(mǎn)足條件,則Z=x+y的最大值為   
【答案】分析:先根據(jù)約束條件畫(huà)出可行域,設(shè)z=x+y,再利用z的幾何意義求最值,只需求出直線(xiàn)z=x+y過(guò)可行域內(nèi)的點(diǎn)B時(shí),從而得到z值即可.
解答:解:先根據(jù)約束條件畫(huà)出可行域,設(shè)z=x+y,
將最大值轉(zhuǎn)化為y軸上的截距,
當(dāng)直線(xiàn)z=x+y經(jīng)過(guò)點(diǎn)B( )時(shí),z最大,
數(shù)形結(jié)合,將點(diǎn)B的坐標(biāo)代入z=x+y得
z最大值為:,
故答案為:
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是最常見(jiàn)的問(wèn)題,這類(lèi)問(wèn)題一般要分三步:畫(huà)出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x、y滿(mǎn)足
x-y+2≥0
x+y-2≤0
y≥0
 (x∈z,y∈z),每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),經(jīng)過(guò)其中任意兩點(diǎn)作直線(xiàn),則不同直線(xiàn)的條數(shù)是( 。
A、14B、19C、36D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿(mǎn)足
x-y+2≥0
x+y-2≤0
y≥0
,每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),則過(guò)這些點(diǎn)中的其中兩個(gè)點(diǎn)可作
 
條不同的直線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省許昌市三校高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知實(shí)數(shù)x、y滿(mǎn)足 (x∈z,y∈z),每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),經(jīng)過(guò)其中任意兩點(diǎn)作直線(xiàn),則不同直線(xiàn)的條數(shù)是( )
A.14
B.19
C.36
D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省嘉興市海鹽縣元濟(jì)高級(jí)中學(xué)高考全真壓軸數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知實(shí)數(shù)x,y滿(mǎn)足,每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),則過(guò)這些點(diǎn)中的其中兩個(gè)點(diǎn)可作    條不同的直線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省期末題 題型:單選題

已知實(shí)數(shù)x,y滿(mǎn)足(x∈Z,y∈Z),每一對(duì)整數(shù)(x,y)對(duì)應(yīng)平面上一個(gè)點(diǎn),經(jīng)過(guò)其中任意兩點(diǎn)作直線(xiàn),則不同直線(xiàn)的條數(shù)是
[     ]
A.14
B.19
C.36
D.72

查看答案和解析>>

同步練習(xí)冊(cè)答案