3.己知四面體A-BCD中,BC=CD=BD=4$\sqrt{2}$,AB=AC=4$\sqrt{5}$,AD=6,求四面體A-BCD的外接球半徑.

分析 由題意畫(huà)出幾何體的圖形,推出四面體的外接球的球心的位置,利用球的半徑建立方程,即可求出四面體A-BCD的外接球半徑.

解答 解:畫(huà)出幾何體的圖形,作CO⊥AD,連接BO,則BO⊥AD,
∴AO⊥平面BOC,
取BC的中點(diǎn)E,則OE⊥BC,球的球心在OE連線上,
設(shè)OA=x,則(4$\sqrt{5}$)2-x2=(4$\sqrt{2}$)2-(6-x)2,
∴x=7,CO=$\sqrt{31}$,
∴OE=$\sqrt{23}$
設(shè)球心為G,設(shè)球的半徑為R,GE=x,則R2=8+x2=1+($\sqrt{23}$-x)2,
∴x=$\frac{8}{\sqrt{23}}$,R=$\frac{2\sqrt{1426}}{23}$.

點(diǎn)評(píng) 考查四面體的外接球的半徑的求法,考查空間想象能力,能夠判斷球心的位置是本題解答的關(guān)鍵,考查計(jì)算能力,轉(zhuǎn)化思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.一個(gè)完整的程序框圖至少包含(  )
A.終端框和輸入、輸出框B.終端框和處理框
C.終端框和判斷框D.終端框、處理框和輸入、輸出框

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.先后任意地拋一枚質(zhì)地均勻的正方體骰子兩次,所得點(diǎn)分別記為a和b,則函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+bx存在極值的概率為( 。
A.$\frac{13}{36}$B.$\frac{17}{36}$C.$\frac{19}{36}$D.$\frac{23}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),數(shù)列{an}滿足a1=1,an=f($\frac{1}{{a}_{n-1}}$),n∈N*,且n≥2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N*,設(shè)Sn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$,若Sn≥$\frac{3t}{4n}$恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知三棱錐P-ABC中,PA=PB=PC,△ABC是邊長(zhǎng)為2等邊三角形,側(cè)棱與底面所成夾角的余弦值為$\frac{\sqrt{6}}{3}$,則該三棱錐外接球的表面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}是等比數(shù)列.
(1)設(shè)a1=1,a4=8.
①若$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2n}}$=M($\frac{1}{{a}_{1}^{2}}$+$\frac{1}{{a}_{2}^{2}}$+…+$\frac{1}{{a}_{n}^{2}}$),n∈N*,求實(shí)數(shù)M的值;
②若在$\frac{1}{{a}_{1}}$與$\frac{1}{{a}_{4}}$中插入k個(gè)數(shù)b1,b2,…,bk,使$\frac{1}{{a}_{1}}$,b1,b2,…,bk,$\frac{1}{{a}_{4}}$,$\frac{1}{{a}_{5}}$成等差數(shù)列,求這k個(gè)數(shù)的和Sk;
(2)若一個(gè)數(shù)列{cn}的所有項(xiàng)都是另一個(gè)數(shù)列{dn}中的項(xiàng),則稱(chēng){cn}是{dn}的子數(shù)列,已知數(shù)列{bn}是公差不為0的等差數(shù)列,b1=a1,b2=a2,bm=a3,其中m是某個(gè)正整數(shù),且m≥3,求證:數(shù)列{an}是{bn}的子數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在?ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,將△ABD沿BD折起,使平面ABD⊥平面BCD,2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,則三棱錐A-BCD的外接球的半徑為( 。
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=λan2+an
(1)若λ=$\frac{1}{{n({n+1})}}$,求證:an<1;
(2)若λ=n,求證:$\frac{1}{{{a_1}+1}}$+$\frac{1}{{{a_2}+1}}$+…+$\frac{1}{{{a_n}+1}}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)x和y為正數(shù),已知$\sqrt{x}-\sqrt{y}$=10,證明x-2y≤200.

查看答案和解析>>

同步練習(xí)冊(cè)答案