A. | $-\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
分析 以A為原點,AB為x軸,AC為y軸,AA1為z軸,建立空間直角坐標系,利用向量法能求出異面直線AC1,A1B所成角的余弦值.
解答 解:∵在直三棱柱ABC-A1B1C1中,∠CAB=90°,
∴以A為原點,AB為x軸,AC為y軸,AA1為z軸,建立空間直角坐標系,
設(shè)AC=AB=AA1=1,
則A(0,0,0),C1(0,1,1),A1(0,0,1),B(1,0,0),
$\overrightarrow{A{C}_{1}}$=(0,1,1),$\overrightarrow{{A}_{1}B}$=(1,0,-1),
設(shè)異面直線AC1,A1B所成角為θ,
則cosθ=$\frac{|\overrightarrow{A{C}_{1}}•\overrightarrow{{A}_{1}B}|}{|\overrightarrow{A{C}_{1}}|•|\overrightarrow{{A}_{1}B}|}$=$\frac{1}{\sqrt{2}•\sqrt{2}}$=$\frac{1}{2}$.
∴異面直線AC1,A1B所成角的余弦值為$\frac{1}{2}$.
故選:D.
點評 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 |
f(x) | 5 | 4 | 3 | 1 | 2 |
A. | 2 | B. | 1 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{π}{3}$ | B. | $-\frac{π}{6}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2次 | B. | 3次 | C. | 4次 | D. | 5次 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 48 | B. | 36 | C. | 24 | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com