A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不確定 |
分析 由已知利用二倍角的余弦函數(shù)公式,余弦定理可求a2+b2=c2,利用勾股定理即可得解.
解答 解:∵cos2$\frac{B}{2}=\frac{a+c}{2c}$,可得:$\frac{1+cosB}{2}$=$\frac{a+c}{2c}$,
∴整理可得:cosB=$\frac{a}{c}$,
又∵cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,
∴$\frac{a}{c}$=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,整理可得:a2+b2=c2,
∴△ABC的形狀為直角三角形.
故選:B.
點(diǎn)評(píng) 本題主要考查了二倍角的余弦函數(shù)公式,余弦定理,勾股定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值16 | B. | 最小值$\frac{1}{16}$ | C. | 最小值16 | D. | 最小值$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com