11.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+3x+2,\;x≥0}\\{{x^2}-3x+2,\;x<0}\end{array}}$,則不等式f(2x-1)>f(1)的解集為(-∞,0)∪(1,+∞).

分析 判斷函數(shù)的單調(diào)性,利用單調(diào)性的性質(zhì)列出不等式,求解即可.

解答 解:f(x)=x2+3x+2,x≥0時(shí)函數(shù)是增函數(shù),f(1)=6.
f(x)=x2-3x+2,x<0時(shí)函數(shù)是減函數(shù),f(x)是偶函數(shù),
則不等式f(2x-1)>f(1)可得x≥0時(shí),2x-1>1,解得x∈(1,+∞).
x<0時(shí),2x-1<-1,解得x∈(-∞,0).
綜上:(-∞,0)∪(1,+∞).
故答案為:(-∞,0)∪(1,+∞).

點(diǎn)評 本題考查函數(shù)的單調(diào)性的判斷與應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用0,1,2,3,4,5這6個(gè)數(shù)字可以組成多少個(gè)沒有重復(fù)的4位數(shù)?其中有多少個(gè)是2的倍數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.規(guī)定A${\;}_{x}^{m}$=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且A${\;}_{x}^{0}$=1,這是排列數(shù)A${\;}_{n}^{m}$(n,m是正整數(shù),n≤m)的一種推廣.
(Ⅰ) 求A${\;}_{-9}^{3}$的值;
(Ⅱ)排列數(shù)的兩個(gè)性質(zhì):①A${\;}_{n}^{m}$=nA${\;}_{n-1}^{m-1}$,②A${\;}_{n}^{m}$+mA${\;}_{n}^{m-1}$=A${\;}_{n+1}^{m}$(其中m,n是正整數(shù)).是否都能推廣到A${\;}_{x}^{m}$(x∈R,m是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(Ⅲ)已知函數(shù)f(x)=aA${\;}_{x}^{2}$+xlnx+ax,若f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),求證:f(x2)>f(x1)>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=asin2x-$\frac{1}{3}$sin3x(a為常數(shù)),在x=$\frac{π}{3}$處取得極值,則a=( 。
A.$\frac{1}{2}$B.1C.$\frac{2}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)數(shù)列{an}滿足a1=1,a2=4,a3=9,an=an-1+an-2-an-3,n=4,5,…,則a2017=( 。
A.8064B.8065C.8067D.8068

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓x2+y2=16的圓心為P,點(diǎn)Q(a,b)在圓P外,以PQ為直徑作圓M與圓P相交于A,B兩點(diǎn).
(1)試確定直線QA,QB與圓P的位置關(guān)系,若QA=QB=3,寫出點(diǎn)Q所在曲線的方程;
(2)若a=4,b=6,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.f(x)=$\frac{1}{2}{x^2}$-ax+(a-1)lnx,
(1)當(dāng)a=3時(shí),求f(x)的極值點(diǎn);
(2)當(dāng)a<1時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)式f(n)表示n2+1(n∈N*)的各位上的數(shù)字之和,
如142+1=197,1+9+7=17所以f(14)=17,
記f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)],k∈N*
則f2010(17)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在極坐標(biāo)系中,點(diǎn)($\sqrt{2}$,$\frac{π}{4}$)到直線ρsin(θ-$\frac{π}{3}$)=-$\frac{{\sqrt{3}}}{2}$的距離是( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案