11.若x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥8}\\{x≤4}\\{y≤3}\end{array}\right.$,則$\frac{y}{x}$的最小值為$\frac{1}{2}$.

分析 作出平面區(qū)域,則$\frac{y}{x}$表示過原點(diǎn)和平面區(qū)域內(nèi)一點(diǎn)的直線斜率.

解答 解:作出平面區(qū)域如圖:

由平面區(qū)域可知當(dāng)直線y=kx經(jīng)過B點(diǎn)時(shí)斜率最小.
解方程組$\left\{\begin{array}{l}{x=4}\\{x+2y=8}\end{array}\right.$得B(4,2).
∴$\frac{y}{x}$的最小值為$\frac{2}{4}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查了簡單的線性規(guī)劃,根據(jù)平面區(qū)域找出最優(yōu)解的位置是解題關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),若離心率$e=\frac{{\sqrt{5}-1}}{2}$(e≈0.618),則稱橢圓C為“黃金橢圓”.則下列三個(gè)命題中正確命題的個(gè)數(shù)是( 。
①在黃金橢圓C中,a、b、c成等比數(shù)列;
②在黃金橢圓C中,若上頂點(diǎn)、右頂點(diǎn)分別為E、B,則∠F1EB=90°;
③在黃金橢圓C中,以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過焦點(diǎn)F1、F2
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.己知[x]表示不大于實(shí)數(shù)x的最大整數(shù),如[π]=3,[-$\frac{10}{3}$]=-4,若令{x}=x-[x],z=$\frac{\{\sqrt{3}-2×\{\sqrt{2}\}\}}{\{\sqrt{3}{\}}^{2}-2×\{\sqrt{2}{\}}^{2}-2}$,則[z]=( 。
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知方程2x2-($\sqrt{3}+1$)x+m=0的兩根sinθ和cosθ,(其中θ∈(0,$\frac{π}{4}$)),求:
(1)求m的值.
(2)求sinθ-cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)二項(xiàng)式(x-y)m(m∈N*)的展開式中,x4yr的系數(shù)為-35,則(2x+$\frac{1}{2\sqrt{x}}$)r+3的展開式中,常數(shù)項(xiàng)為(  )
A.$\frac{21}{2}$B.$\frac{15}{4}$C.10D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若0<α<$\frac{π}{2}$,利用三角函數(shù)線證明:
(1)sinα<α<tanα;
(2)sinα+cosα>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,A(-1,0),B(1,0),若△ABC的重心G和垂心H滿足GH平行于x軸(G.H不重合),
(I)求動(dòng)點(diǎn)C的軌跡Γ的方程;
(II)已知O為坐標(biāo)原點(diǎn),若直線AC與以O(shè)為圓心,以|OH|為半徑的圓相切,求此時(shí)直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{12}$]的端點(diǎn)上恰取相鄰的一個(gè)最大值點(diǎn)和最小值點(diǎn),則ω的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$x2+lnx-mx(m>0),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案