17.把函數(shù)y=cosx的圖象向左平移$\frac{π}{4}$個(gè)單位,所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,縱坐標(biāo)擴(kuò)大到原來(lái)的兩倍,所得圖形表示的函數(shù)的解析式為y=2cos(2x+$\frac{π}{4}$).

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把函數(shù)y=cosx的圖象向左平移$\frac{π}{4}$個(gè)單位,可得y=cos(x+$\frac{π}{4}$)的圖象;
再把所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,可得y=cos(2x+$\frac{π}{4}$)的圖象;
再把縱坐標(biāo)擴(kuò)大到原來(lái)的兩倍,所得函數(shù)的解析式為y=2cos(2x+$\frac{π}{4}$),
故答案為:y=2cos(2x+$\frac{π}{4}$).

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.用min{m,n}表示m,n中的最小值.已知函數(shù)f(x)=x3+ax+$\frac{1}{4}$,g(x)=-lnx,設(shè)函數(shù)h(x)=min{f(x),g(x)}(x>0),若h(x)有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是($-\frac{5}{4}$,$-\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知sinα=$\frac{5}{13}$,α是第一象限角,則cos(π-α)的值為$-\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1+x)4+(1+x)5+…+(1+x)9展開(kāi)式中,x3項(xiàng)的系數(shù)為209.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.用1、2、3、4、5這5個(gè)數(shù)字,組成無(wú)重復(fù)數(shù)字的三位數(shù),這樣的三位數(shù)有( 。
A.12個(gè)B.48個(gè)C.60個(gè)D.125個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知A={x||x-1|≤2},B={x|x-a>0},若A∪B=B,則實(shí)數(shù)a的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.?dāng)?shù)列{an}和{bn}的每一項(xiàng)都是正數(shù),且a1=8,b1=16,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列.
(Ⅰ)求a2,b2的值;
(Ⅱ)求數(shù)列{an},{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=(ax2+x+2)ex(a>0),其中e是自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=2時(shí),求f(x)的極值;
(2)若f(x)在[-2,2]上是單調(diào)增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.一物體沿斜面自由下滑,測(cè)得下滑的水平距離s與時(shí)間t之間的函數(shù)關(guān)系為s=3t3,則當(dāng)t=1時(shí),該物體在水平方向的瞬時(shí)速度為9.

查看答案和解析>>

同步練習(xí)冊(cè)答案