已知點,向量,E為線段DC上的一點,且四邊形OBED為等腰梯形,則向量等于                                      (    )

    A.                          B.

    C.                         D.

 

【答案】

A

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F,點E(
a2
c
,0)
在x軸上,若橢圓的離心率e=
2
2
,且|EF|=1.
(1)求a,b的值;
(2)若過F的直線交橢圓于A,B兩點,且
OA
+
OB
與向量
m
=(4,-
2
)
共線(其中O為坐標原點),求證:
OA
OB
的夾角為
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江門一模)已知橢圓C的中心在原點O,離心率e=
3
2
,右焦點為F(
3
,0)

(1)求橢圓C的方程;
(2)設橢圓的上頂點為A,在橢圓C上是否存在點P,使得向量
OP
+
OA
FA
共線?若存在,求直線AP的方程;若不存在,簡要說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
OA
=
a
,
OB
=
b
,
OC
=
c
,
OD
=
d
OE
=
e
,且向量
a
與向量
b
為不共線的兩個向量,設
c
=3
a
,
d
=2
b
e
=t(
a
+
b
),t為實數(shù).
(1)用向量
a
,
b
或實數(shù)t來表示向量
CD
,
CE
;
(2)實數(shù)t為何值時,C,D,E三點在一條直線上?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知橢圓C:
x2
a2
+y2=1(a>0)
的右頂點為A,上頂點為B,直線y=t與橢圓交于不同的兩點E,F(xiàn),若D(x,y)是以EF為直徑的圓上的點,當t變化時,D點的縱坐標y的最大值為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,
2
)
且斜率k為的直線l與橢圓C交于不同的兩點P,Q,是否存在k,使得向量
OP
+
OQ
AB
共線?若存在,試求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

選擇題:

(1)已知,,,則

[  ]

(A)A、B、D三點共線

(B)A、B、C三點共線

(C)BC、D三點共線

(D)A、C、D三點共線

(2)已知正方形ABCD的邊長為1,,,則等于

[  ]

(A)0

(B)3

(C)

(D)

(3)已知,,且四邊形ABCD為平行四邊形,則

[  ]

(A)abcd0

(B)abcd0

(C)abcd0

(D)abcd0

(4)已知D、E、F分別是△ABC的邊BCCA、AB的中點,且,,則①;②;③;④

中正確的等式的個數(shù)為

[  ]

(A)1

(B)2

(C)3

(D)4

(5)是夾角為60°的兩個單位向量,則;的夾角為

[  ]

(A)30°

(B)60°

(C)120°

(D)150°

(6)若向量a、bc兩兩所成的角相等,且,,則等于

[  ]

(A)2

(B)5

(C)25

(D)

(7)等邊三角形ABC的邊長為1,,,那么a·bb·cc·a等于

[  ]

(A)3

(B)3

(C)

(D)

查看答案和解析>>

同步練習冊答案