【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測算某產(chǎn)品當(dāng)促銷費(fèi)用為萬元時(shí),銷售量萬件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為萬元/萬件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大.
【答案】(1)y=25-(+x),(0≤x≤a,a為正常數(shù))(2)見解析
【解析】試題分析:
(1)利潤為總銷售所得減去投入成本和促銷費(fèi)用,得y=t(5+))﹣(10+2t)﹣x=3t+10-x,又銷售量t萬件滿足t=5-,整理化簡可得y=25-(+x);(2)將函數(shù)方程整理為對(duì)勾函數(shù)形式y =28-(+x+3),利用基本不等式得到= x +3,即x =3時(shí),得到利潤最大值為。
試題解析:
(1)由題意知,利潤y=t(5+))﹣(10+2t)﹣x=3t+10-x
由銷售量t萬件滿足t=5-(其中0≤x≤a,a為正常數(shù)).
代入化簡可得:y=25-(+x),(0≤x≤a,a為正常數(shù))
(2)由(1)知y =28-(+x+3),
當(dāng)且僅當(dāng)= x +3,即x =3時(shí),上式取等號(hào).
當(dāng)a≥3時(shí),促銷費(fèi)用投入3萬元時(shí),廠家的利潤最大;
當(dāng)0<a<3時(shí),y在0≤x≤a上單調(diào)遞增,
x = a,函數(shù)有最大值.促銷費(fèi)用投入x = a萬元時(shí),廠家的利潤最大.
綜上述,當(dāng)a≥3時(shí),促銷費(fèi)用投入3萬元時(shí),廠家的利潤最大;
當(dāng)0<a<3時(shí),促銷費(fèi)用投入x = a萬元時(shí),廠家的利潤最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓O與圓P相交于A,B兩點(diǎn),圓心P在圓O上,圓O的弦BC切圓P于點(diǎn)B,CP及其延長線交圓P于D,E兩點(diǎn),過點(diǎn)E作EF⊥CE,交CB的延長線于點(diǎn)F.
(1)求證:B,P,E,F四點(diǎn)共圓;
(2)若CD=2,CB=2 ,求出由B,P,E,F四點(diǎn)所確定的圓的直徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海關(guān)對(duì)同時(shí)從A、B、C三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測.
地區(qū) | A | B | C |
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6},則A∪(UB)=( )
A.{2,5}
B.{2,5,7,8}
C.{2,3,5,6,7,8}
D.{1,2,3,4,5,6}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 分別是橢圓: ()的左、右焦點(diǎn),離心率為, , 分別是橢圓的上、下頂點(diǎn), .
(1)求橢圓的方程;
(2)過作直線與交于, 兩點(diǎn),求三角形面積的最大值(是坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(﹣∞,0)上單調(diào)遞增的是( )
A.f(x)=
B.f(x)=x2+1
C.f(x)=x3
D.f(x)=2﹣x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)滿足: ,且當(dāng)﹣3≤x<﹣1時(shí),f(x)=﹣(x+2)2 , 當(dāng)﹣1≤x<3時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市根據(jù)地理位置劃分成了南北兩區(qū),為調(diào)查該市的一種經(jīng)濟(jì)作物(下簡稱 作物)的生長狀況,用簡單隨機(jī)抽樣方法從該市調(diào)查了 500 處 作物種植點(diǎn),其生長狀況如表:
其中生長指數(shù)的含義是:2 代表“生長良好”,1 代表“生長基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,絕收”.
(1)估計(jì)該市空氣質(zhì)量差的作物種植點(diǎn)中,不絕收的種植點(diǎn)所占的比例;
(2)能否有 99%的把握認(rèn)為“該市作物的種植點(diǎn)是否絕收與所在地域有關(guān)”?
(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該市作物的種植點(diǎn)中,絕收種植點(diǎn)的比例?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線與直線平行.
(1)求的值;
(2)若函數(shù)在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)求證:對(duì)任意,時(shí),恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com