12.已知△ABC是鈍角三角形,若AC=1,BC=2,且△ABC的面積為$\frac{{\sqrt{3}}}{2}$,則AB=( 。
A.$\sqrt{3}$B.$\sqrt{7}$C.$2\sqrt{2}$D.3

分析 根據(jù)題意和三角形的面積公式求出sinC的值,由內(nèi)角的范圍、特殊角的正弦值求出角C,再分別利用余弦定理求出AB的值,并利用余弦定理驗(yàn)證是否符合條件.

解答 解:由題意得,鈍角三角形ABC,若AC=1,BC=2,且△ABC的面積為$\frac{{\sqrt{3}}}{2}$,
則$\frac{1}{2}×1×2$×sinC=$\frac{{\sqrt{3}}}{2}$,解得sinC=$\frac{{\sqrt{3}}}{2}$,
由0<C<π得,C=$\frac{π}{3}$或$\frac{2π}{3}$,
當(dāng)C=$\frac{π}{3}$時(shí),由余弦定理得:AB2=AC2+BC2-2AC•BC•cosC=1+4-2×1×$2×\frac{1}{2}$=3,AB=$\sqrt{3}$,
則A是最大角,cosA=0,則A是直角,
這與三角形是鈍角三角形矛盾,
所以C=$\frac{2π}{3}$,則AB2=AC2+BC2-2AC•BC•cosC=1+4+2×1×$2×\frac{1}{2}$=7,則AB=$\sqrt{7}$,
故選:B.

點(diǎn)評(píng) 本題考查余弦定理及其變形,三角形的面積公式,以及特殊角的三角函數(shù)值,注意內(nèi)角的范圍,考查化簡(jiǎn)、計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線y2=2px(p>0)經(jīng)過點(diǎn)(4,-4).
(1)求p的值;
(2)若直線l與此拋物線交于A、B兩點(diǎn),且線段AB的中點(diǎn)為N(2,$\frac{1}{3}$).求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a=20.3,b=log0.23,c=log32,則a,b,c的大小關(guān)系是(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.記[x]表示不超過x的最大整數(shù),如[1.2]=1,[0.5]=0,則方程[x]-x=lnx的實(shí)數(shù)根的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.設(shè)∠DAB=θ(0<θ<$\frac{π}{2}$),L為等腰梯形ABCD的周長(zhǎng).
(1)求周長(zhǎng)L與θ的函數(shù)解析式;
(2)試問周長(zhǎng)L是否存在最大值?若存在,請(qǐng)求出最大值,并指出此時(shí)θ的大;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在${({4{x^2}-\frac{1}{x}})^6}$的展開式中,x-3的系數(shù)為-24.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AB⊥AD,AD∥BC,AD=$\frac{1}{2}$BC=2,E在BC上,且BE=$\frac{1}{2}$AB=1,側(cè)棱PA⊥平面ABCD.
(1)求證:平面PDE⊥平面PAC;
(2)若△PAB為等腰直角三角形.
(i)求直線PE與平面PAC所成角的正弦值;
(ii)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$f(x)=sinωx+\sqrt{3}cosωx({ω>0,x∈R})$,若函數(shù)f(x)在區(qū)間(0,4π)內(nèi)恰有5個(gè)零點(diǎn),則ω的取值范圍是$\frac{7}{6}<ω≤\frac{17}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足$\left\{\begin{array}{l}{x≤y≤2x}\\{x+y≤1}\end{array}\right.$,則z=x+2y的取值范圍為[0,$\frac{5}{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案