已知點(diǎn)p是圓F1:(x+1)2+y2=8上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點(diǎn).

(1)求點(diǎn)M的軌跡C的方程;

(2)斜率為k的直線l與曲線C交于P,Q兩點(diǎn),若·=0(O為坐標(biāo)原點(diǎn)),試求直線l在y軸上截距的取值范圍.

答案:
解析:

  解:(1)由題意得,


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•惠州模擬)已知點(diǎn)P是圓F1:(x+1)2+y2=8上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)斜率為k的直線l與曲線C交于P,Q兩點(diǎn),若
OP
OQ
=0
(O為坐標(biāo)原點(diǎn)),試求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是圓F1:(x+1)2+y2=8上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)斜率為1的直線l與曲線C交于A,B兩點(diǎn),若
OA
OB
=0(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•肇慶二模)已知點(diǎn)P是圓F1(x+
3
)2+y2=16
上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱.線段PF2的中垂線與PF1交于M點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個(gè)左右交點(diǎn)分別為A,B,點(diǎn)K是軌跡C上異于A,B的任意一點(diǎn),KH⊥x軸,H為垂足,延長HK到點(diǎn)Q使得HK=KQ,連接AQ延長交過B且垂直于x軸的直線l于點(diǎn)D,N為DB的中點(diǎn).試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省肇慶市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P是圓F1上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱.線段PF2的中垂線與PF1交于M點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個(gè)左右交點(diǎn)分別為A,B,點(diǎn)K是軌跡C上異于A,B的任意一點(diǎn),KH⊥x軸,H為垂足,延長HK到點(diǎn)Q使得HK=KQ,連接AQ延長交過B且垂直于x軸的直線l于點(diǎn)D,N為DB的中點(diǎn).試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省肇慶市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知點(diǎn)P是圓F1上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對稱.線段PF2的中垂線與PF1交于M點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個(gè)左右交點(diǎn)分別為A,B,點(diǎn)K是軌跡C上異于A,B的任意一點(diǎn),KH⊥x軸,H為垂足,延長HK到點(diǎn)Q使得HK=KQ,連接AQ延長交過B且垂直于x軸的直線l于點(diǎn)D,N為DB的中點(diǎn).試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案