【題目】產(chǎn)能利用率是工業(yè)總產(chǎn)出對生產(chǎn)設(shè)備的比率,反映了實際生產(chǎn)能力到底有多少在運(yùn)轉(zhuǎn)發(fā)揮生產(chǎn)作用.汽車制造業(yè)的產(chǎn)能利用率的正常值區(qū)間為,稱為“安全線”.如圖是2017年第3季度到2019年第4季度的中國汽車制造業(yè)的產(chǎn)能利用率的統(tǒng)計圖.以下結(jié)論正確的是(

A.10個季度中,汽車產(chǎn)能利用率低于“安全線”的季度有5

B.10個季度中,汽車產(chǎn)能利用率的中位數(shù)為

C.20184個季度的汽車產(chǎn)能利用率的平均數(shù)為

D.與上一季度相比,汽車產(chǎn)能利用率變化最大的是2019年第4季度

【答案】AC

【解析】

由統(tǒng)計圖可知,產(chǎn)能利用率低于“安全線”的季度為圖表中的后5個季度,可知A正確;對這10個數(shù)據(jù)從小到大(或從大到小)排列后求第5個和第6個的平均數(shù)可得其中位數(shù);利用平均數(shù)的定義直接求平均數(shù),由圖可知汽車產(chǎn)能利用率變化最大的是2018年第1季度

10個季度中,汽車產(chǎn)能利用率低于“安全線”的季度為2018年第4季度到2019年第4季度,

5個季度,A正確;10個季度中,汽車產(chǎn)能利用率的中位數(shù)為B錯誤;

由圖可知,20184個季度的汽車產(chǎn)能利用率的平均數(shù)為,C正確;

與上一季度相比,汽車產(chǎn)能利用率變化最大的是2018年第1季度,與上一季度相差,

2019年第4季度與上一季度相差,D錯誤.

故選:AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列的前n項和為,,且對任意n恒成立.

1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;

2)設(shè),已知,,(2ij)成等差數(shù)列,求正整數(shù)i,j.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知可導(dǎo)函數(shù)fx)的定義域為,且滿足,則對任意的,“”是“”的( )

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,的導(dǎo)函數(shù).

1)討論的單調(diào)性;

2)若,當(dāng)時,求證:有兩個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有6名選手參加才藝比賽,其中男、女選手各3名,且3名男選手分別表演歌唱、舞蹈和魔術(shù),3名女選手分別表演歌唱、舞蹈和魔術(shù),若要求相鄰出場的選手性別不同且表演的節(jié)目不同,則不同的出場方式的種數(shù)為(

A.6B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論上的單調(diào)性;

2)當(dāng)時,求上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)在定義域(0+∞)上是單調(diào)函數(shù),且x∈(0+∞),ffx)﹣ex+x)=e.若不等式2fx)﹣f′(x)﹣3axx∈(0+∞)恒成立,則a的取值范圍是(

A.(﹣∞,e2]B.(﹣∞,e1]C.(﹣∞,2e3]D.(﹣∞,2e1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是等腰梯形,,,三角形是等邊三角形,平面平面,EF分別為,的中點.

1)求證:平面平面

2)若,求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)討論的單調(diào)性;

2)已知函數(shù)有兩個極值點,求證:

查看答案和解析>>

同步練習(xí)冊答案