【題目】已知.
(1)討論的單調(diào)性;
(2)已知函數(shù)有兩個(gè)極值點(diǎn),求證:.
【答案】(1)當(dāng)時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),函數(shù)單調(diào)遞增.(2)見解析.
【解析】
(1)先對函數(shù)求導(dǎo),令,求出解為,從而可探究、隨自變量的變化,結(jié)合導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求解;
(2)由(1)可知,記,結(jié)合基本不等式可證明,從而可知在上單調(diào)遞增,則可知,結(jié)合 的單調(diào)性可證明.
解:(1),記,則.
由, ,解得.
當(dāng)時(shí),,函數(shù)即單調(diào)遞減;
當(dāng)時(shí),,函數(shù)即單調(diào)遞增.
(2)由題意知有兩個(gè)零點(diǎn),為,不妨設(shè),
由(1)可知,.所以.
記
,則,因?yàn)?/span>,
由均值不等式可得,
當(dāng)且僅當(dāng),即時(shí),等號成立.所以在上單調(diào)遞增.
由,可得,即,
因?yàn)?/span>為函數(shù)的兩個(gè)零點(diǎn),所以,所以,
又,所以,又函數(shù)在上單調(diào)遞減,
所以,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】產(chǎn)能利用率是工業(yè)總產(chǎn)出對生產(chǎn)設(shè)備的比率,反映了實(shí)際生產(chǎn)能力到底有多少在運(yùn)轉(zhuǎn)發(fā)揮生產(chǎn)作用.汽車制造業(yè)的產(chǎn)能利用率的正常值區(qū)間為,稱為“安全線”.如圖是2017年第3季度到2019年第4季度的中國汽車制造業(yè)的產(chǎn)能利用率的統(tǒng)計(jì)圖.以下結(jié)論正確的是( )
A.10個(gè)季度中,汽車產(chǎn)能利用率低于“安全線”的季度有5個(gè)
B.10個(gè)季度中,汽車產(chǎn)能利用率的中位數(shù)為
C.2018年4個(gè)季度的汽車產(chǎn)能利用率的平均數(shù)為
D.與上一季度相比,汽車產(chǎn)能利用率變化最大的是2019年第4季度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春秋以前中國已有“抱甕而出灌”的原始提灌方式,使用提水吊桿——桔槔,后發(fā)展成轆轤.19世紀(jì)末,由于電動(dòng)機(jī)的發(fā)明,離心泵得到了廣泛應(yīng)用,為發(fā)展機(jī)械提水灌溉提供了條件.圖形如圖所示為灌溉抽水管道在等高圖的上垂直投影,在A處測得B處的仰角為37度,在A處測得C處的仰角為45度,在B處測得C處的仰角為53度,A點(diǎn)所在等高線值為20米,若BC管道長為50米,則B點(diǎn)所在等高線值為( )(參考數(shù)據(jù))
A.30米B.50米C.60米D.70米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);
(2)已知直線:與圓:交于,兩點(diǎn),記的面積為,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為a,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F,且EFa,以下結(jié)論正確的有( 。
A.AC⊥BE
B.點(diǎn)A到△BEF的距離為定值
C.三棱錐A﹣BEF的體積是正方體ABCD﹣A1B1C1D1體積的
D.異面直線AE,BF所成的角為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是函數(shù)的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.
(參考數(shù)據(jù):,,其中為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障某種藥品的主要藥理成分在國家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),某制藥廠在該藥品的生產(chǎn)過程中,檢驗(yàn)員在一天中按照規(guī)定每間隔2小時(shí)對該藥品進(jìn)行檢測,每天檢測4次:每次檢測由檢驗(yàn)員從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測,測量其主要藥理成分含量(單位:)根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的其主要藥理成分含量服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某次抽取的20件產(chǎn)品中其主要藥理成分含量在之外的藥品件數(shù),求的數(shù)學(xué)期望;
(2)在一天的四次檢測中,如果有一次出現(xiàn)了主要藥理成分含量在之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)異常情況,需對本次的生產(chǎn)過程進(jìn)行檢查;如果有兩次或兩次以上出現(xiàn)了主要藥理成分含量在之外的藥品,則需停止生產(chǎn)并對原材料進(jìn)行檢測.
①下面是檢驗(yàn)員在某次抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 10.05 | 10.05 | 9.96 | 10.12 |
經(jīng)計(jì)算得,,.其中為抽取的第件藥品的主要藥理成分含量,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對本次的生產(chǎn)過程進(jìn)行檢查?
②試確定一天中需停止生產(chǎn)并對原材料進(jìn)行檢測的概率(精確到0.001).
附:若隨機(jī)變量服從正態(tài)分布,則,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孫子定理是中國古代求解一次同余式組的方法,是數(shù)論中一個(gè)重要定理,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》,年英國來華傳教士偉烈亞力將其問題的解法傳至歐洲,年英國數(shù)學(xué)家馬西森指出此法符合年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.這個(gè)定理講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將至這個(gè)整數(shù)中能被除余且被除余的數(shù)按由小到大的順序排成一列構(gòu)成一數(shù)列,則此數(shù)列的項(xiàng)數(shù)是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com