14.若點(diǎn)P在拋物線(xiàn)y=x2上,點(diǎn)Q(0,3),則|PQ|的最小值是(  )
A.$\frac{\sqrt{13}}{2}$B.$\frac{\sqrt{11}}{2}$C.3D.$\sqrt{5}$

分析 由已知條件,設(shè)P(x,y),利用兩點(diǎn)間距離公式,求出|PQ|,由此利用配方法能求出|PQ|的最小值.

解答 解:設(shè)P(x,y),
∵Q(0,3),
∴|PQ|=$\sqrt{{x}^{2}+(y-3)^{2}}$=$\sqrt{{y}^{2}-5y+9}$=$\sqrt{(y-\frac{5}{2})^{2}+\frac{11}{4}}$≥$\frac{\sqrt{11}}{2}$,
∴|PQ|的最小值是$\frac{\sqrt{11}}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查兩點(diǎn)間距離公式,考查配方法的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知雙曲線(xiàn)$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{5}$,則該雙曲線(xiàn)的漸近線(xiàn)方程為( 。
A.y=±2xB.$y=±\frac{1}{2}x$C.$y=±\frac{1}{4}x$D.y=±4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知球O的一個(gè)內(nèi)接三棱錐P-ABC,其中△ABC是邊長(zhǎng)為2的正三角形,PC為球O的直徑,且PC=4,則此三棱錐的體積為( 。
A.$\frac{2}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{2}$C.$\frac{4}{3}\sqrt{6}$D.$\frac{2}{3}\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在正三棱柱ABC-A1B1C1中,AB=AA1=1,DC=DC1,AE=ED,F(xiàn)為BB1上任意一點(diǎn),且FB1=3BF.
(Ⅰ)求證:EF∥平面ABC;
(Ⅱ)求該三棱柱的側(cè)面展開(kāi)圖的對(duì)角線(xiàn)長(zhǎng);
(Ⅲ)三棱錐B1-ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)A是拋物線(xiàn)C:x2=2py(p>0)上一點(diǎn),O為坐標(biāo)原點(diǎn),若以點(diǎn)M(0,8)為圓心,|OA|的長(zhǎng)為半徑的圓交拋物線(xiàn)C于A,B兩點(diǎn),且△ABO為等邊三角形,則p的值是( 。
A.$\frac{3}{8}$B.2C.6D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,底面是直角三角形的直三棱柱ABC-A1B1C1中,$AC=BC=\frac{1}{2}A{A_1}=1$,D是棱AA1上的動(dòng)點(diǎn).
(1)證明:DC1⊥BC;
(2)求三棱錐C-BDC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)正項(xiàng)數(shù)列{an}滿(mǎn)足:a1=1,且對(duì)任意的n,m∈N+,n>m,均有a2n+m•a2n-m=n2-m2成立.
(1)求a2,a3的值,并求{an}的通項(xiàng)公式;
(2)(。┍容^a2n-1+a2n+1與2a2n的大小;
(ⅱ)證明:a2+a4+…+a2n>$\frac{n}{n+1}({a_1}+{a_3}+…+{a_{2n+1}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=$\frac{2}{5}$AA1,D是棱AA1上的點(diǎn),且AD=$\frac{1}{4}$DA1
(1)證明:平面BDC1⊥平面BDC;
(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.已知sinB-sinC=$\frac{1}{4}$sinA,2b=3c,則cosA=$-\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案