精英家教網 > 高中數學 > 題目詳情

【題目】設函數

1)當時,求不等式的解集

2)若函數,且有解,求的取值范圍.

【答案】1;(2.

【解析】

1)當時,不等式化為|x+2|x2,去絕對值,解不等式即可;

2)求出gx)的最小值,使得所以gxmin≤11即可.

1)當a=2時,不等式化為|x+2|x2,

所以-x2x+2x2,所以x2x-1,

所以不等式的解集為:{x|x2x-1}

2)方法一:gx=f2x+f1-x

=|2x+a|+|x-a+1|=|x+|+|x+|+|x-a+1|

≥|+a+1|=|+1|,

因為gx)≤11(a0)有解,所以gxmin≤11,即,

所以3a≤20,所以0a

所以a的取值范圍為(0,]

方法二:,

x=時,,

因為gx)≤11(a0)有解,所以gxmin≤11,即,

所以3a≤20,所以0a,

所以a的取值范圍為(0,]

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下圖是國家統(tǒng)計局今年411日發(fā)布的20183月到20193月全國居民消費價格的漲跌幅情況折線圖.(注:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比),根據該折線圖,下列結論錯誤的是

A. 20183月至20193月全國居民消費價格同比均上漲

B. 20183月至20193月全國居民消費價格環(huán)比有漲有跌

C. 20193月全國居民消費價格同比漲幅最大

D. 20193月全國居民消費價格環(huán)比變化最快

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是雙曲線的右焦點,左支上一點,),當周長最小時,則點的縱坐標為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本題滿分14本題共有2個小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細通過連接管道全部到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細沙全部在上部時,高度為圓錐高度的細管長忽略不

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒精確1秒

2全部漏入下部,恰好堆成一蓋沙漏底的圓錐形沙求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是定義在上的周期函數,周期,對都有,且當時,,若在區(qū)間內關于的方程恰有3個不同的實根,則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖:四棱錐P-ABCD底面為一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥平面ABCD,F是PC中點。

(Ⅰ)求證:平面PDC⊥平面PAD;

(Ⅱ)求證:BF∥平面PAD。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】科研人員在對人體脂肪含量和年齡之間關系的研究中,獲得了一些年齡和脂肪含量的簡單隨機樣本數據,如下表:

(年齡/歲)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根據上表的數據得到如下的散點圖.

(1)根據上表中的樣本數據及其散點圖:

(i)求

(i)計算樣本相關系數(精確到0.01),并刻畫它們的相關程度.

(2)若關于的線性回歸方程為,求的值(精確到0.01),并根據回歸方程估計年齡為50歲時人體的脂肪含量.

附:參考數據:img src="http://thumb.zyjl.cn/Upload/2019/08/18/08/786210e5/SYS201908180802150104289801_ST/SYS201908180802150104289801_ST.007.png" width="51" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,,,

參考公式:相關系數

回歸方程中斜率和截距的最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,是邊長為1的等邊三角形,M為線段中點,.

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)線段上是否存在點N,使得直線平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案