若方程2a•9sinx+4a•3sinx+a-8=0有解,則a的取值范圍是( 。
A、a>0或a≤-8
B、a>0
C、0<a≤
8
31
D、
8
31
≤a≤
72
23
分析:含有參數(shù)的方程有解問(wèn)題可以和函數(shù)值域建立聯(lián)系,需要注意三角函數(shù)的有界性.
解答:解:若方程2a•9sinx+4a•3sinx+a-8=0有解,則
等價(jià)于求a=
8
2•9sinx+4•3sinx+1
的值域
3sinx∈[
1
3
,3]

∴2•9sinx+4•3sinx+1∈[
23
9
,31]

則a的取值范圍為
8
31
≤a≤
72
23

故選D.
點(diǎn)評(píng):等價(jià)轉(zhuǎn)化思想是數(shù)學(xué)重要思想之一,含有參數(shù)的方程有解問(wèn)題通?梢院秃瘮(shù)值域建立聯(lián)系.注意三角函數(shù)的有界性:sinx∈[-1,1].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程2a•9sinx+4a•3sinx+a-8=0有解,則a的取值范圍是
8
31
≤a≤
72
23
8
31
≤a≤
72
23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程2a•9sinx+4a•3sinx+a-8=0有解,則a的取值范圍是( 。
A.a(chǎn)>0或a≤-8B.a(chǎn)>0C.0<a≤
8
31
D.
8
31
≤a≤
72
23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若方程2a•9sinx+4a•3sinx+a-8=0有解,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省咸寧市四校高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若方程2a•9sinx+4a•3sinx+a-8=0有解,則a的取值范圍是( )
A.a(chǎn)>0或a≤-8
B.a(chǎn)>0
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案