1.設(shè)A,B是非空集合,定義A*B={x|x∈A∪B且x∉A∩B},已知M={x|0≤x≤3},N={y|y≤1},則M*N=( 。
A.(1,3]B.(-∞,0)∪(1,3]C.(-∞,3]D.(-∞,0]∪[1,3]

分析 容易求出M∪N和M∩N,然后根據(jù)A*B的定義即可求出M*N.

解答 解:M∪N=(-∞,3],M∩N=[0,1];
∴M*N=(-∞,0)∪(1,3].
故選B.

點(diǎn)評(píng) 考查描述法表示集合的定義,以及交集、并集的運(yùn)算,理解A*B的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{1≤x+y≤2}\\{-1≤x-y≤1}\end{array}\right.$,則z=$\frac{y+1}{x+1}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}滿足a1=1,an+1=an2+an,設(shè)bn=$\frac{1}{{a}_{n}+1}$,用[x]表示不超過x的最大整數(shù),則[b1+b2+…+b8]的值為( 。
A.1B.0C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{x}{lnx}$-ax,a∈R
(1)若函數(shù)f(x)存在單調(diào)遞增區(qū)間,求a的取值范圍;
(2)若存在x∈[e,e2],使得不等式f(x)≤$\frac{1}{4}$成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,AB∥CD,CD⊥AC,過CD的平面分別與PA,PB交于點(diǎn)E,F(xiàn).
(1)求證:CD⊥平面PAC;
(2)求證:AB∥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={1,2,3,5},B={x|x-2>0},那么集合A∩B等于( 。
A.{1}B.{3}C.{1,3}D.{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖計(jì)算乙班同學(xué)的平均身高; 
(2)計(jì)算甲班的樣本方差.
(方差公式S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+(x3-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為x1,x2,…xn平均數(shù))
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173 cm的同學(xué),求身高為176 cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知命題p:“?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0”,則¬p為( 。
A.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1>0
C.?x∈R,ex-x-1>0D.?x∈R,ex-x-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=4,AD=2,AA1=2,點(diǎn)E在棱AB上移動(dòng).
(1)當(dāng)AE=1時(shí),求證:直線D1E⊥平面A1DC1
(2)在(1)的條件下,求${V_{{C_1}-{A_1}DE}}:{V_{{C_1}-{A_1}{D_1}D}}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案