分析 (1)推導(dǎo)出CD⊥PC,CD⊥AC,由此能證明CD⊥平面PAC.
(2)由AB∥CD,平面CDEF∩平面PAB=EF,得到CD∥平面PAB,從而CD∥EF,由此能證明AB∥EF.
解答 證明:(1)∵在四棱錐P-ABCD中,PC⊥平面ABCD,CD?平面ABCD,
∴CD⊥PC,
∵CD⊥AC,PC∩AC=C,
∴CD⊥平面PAC.
(2)∵AB∥CD,過CD的平面分別與PA,PB交于點E,F(xiàn),
且平面CDEF∩平面PAB=EF,
又CD?平面PAB,AB?平面PAB,
∴CD∥平面PAB,∴CD∥EF,
∴AB∥EF.
點評 本題考查線面垂直、線線平行的證明,考查線線垂直、線面平行的證明,考查點到平面的距離的求法,涉及到空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力、數(shù)據(jù)處理能力,考查數(shù)形結(jié)合思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | [-1,0) | C. | 0 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3] | B. | (-∞,0)∪(1,3] | C. | (-∞,3] | D. | (-∞,0]∪[1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 7 | D. | -7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | 1-i | C. | $\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$ | D. | $\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (0,1) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com