已知矩陣M=
.
1a
b1
.
,N=
.
c2
0d
.
,且MN=
.
20
-20
.

(Ⅰ)求實數(shù)a,b,c,d的值;
(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
分析:(Ⅰ)首先根據(jù)矩陣的乘法得到一組方程式,從而求出a、b、c、d的值;
(Ⅱ)根據(jù)線性變換的基本知識,點在矩陣M的作用下的線性變換下還是點,然后求出像的方程.
解答:解:(Ⅰ)由題設(shè)得
c+0=2
2+ad=0
bc+0=-2
2b+d=0
,解得
a=-1
b=-1
c=2
d=2

(Ⅱ)因為矩陣M所對應(yīng)的線性變換將直線變成直線(或點),
所以可取直線y=3x上的兩(0,0),(1,3),
1-1
-1  1
 
0 
0 
=
0 
0 
,
1-1
-1  1
 
1 
3 
=
-2 
2 

得點(0,0),(1,3)在矩陣M所對應(yīng)的線性變換下的像是(0,0),(-2,2),
從而直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程為y=-x.
點評:本小題主要考查矩陣與變換等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)(2)(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)已知矩陣M=
1a
b1
,N=
c2
0d
,且MN=
20
-20
,
(Ⅰ)求實數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線l交于點A、B,若點P的坐標(biāo)為(3,
5
)
,
求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城三模)選修4-2:矩陣與變換
已知矩陣M=
.
1a
b1
.
對應(yīng)的變換將點A(1,1)變?yōu)锳′(0,2),將曲線C:xy=1變?yōu)榍C′.
(1)求實數(shù)a,b的值;
(2)求曲線C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建 題型:解答題

本題設(shè)有(1)(2)(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)已知矩陣M=
1a
b1
,N=
c2
0d
,且MN=
20
-20

(Ⅰ)求實數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線l交于點A、B,若點P的坐標(biāo)為(3,
5
)
,
求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:鹽城三模 題型:解答題

選修4-2:矩陣與變換
已知矩陣M=
.
1a
b1
.
對應(yīng)的變換將點A(1,1)變?yōu)锳′(0,2),將曲線C:xy=1變?yōu)榍C′.
(1)求實數(shù)a,b的值;
(2)求曲線C′的方程.

查看答案和解析>>

同步練習(xí)冊答案