(2012•西區(qū)模擬)如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則BC1與平面BDD1B1所成角的正弦值為
10
5
10
5
分析:連接A1C1交B1D1于O,連接BO,則可得∠C1BO為BC1與平面BBD1B1所成角,利用正弦函數(shù),即可求得結(jié)論.
解答:解:連接A1C1交B1D1于O,連接BO,則
∵長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2
∴C1O⊥平面BDD1B1
∴∠C1BO為BC1與平面BDD1B1所成角
∵C1O=
1
2
A1C1=
2
,BC1=
4+1
=
5

∴sin∠C1BO=
C1O
BC1
=
2
5
=
10
5

故答案為:
10
5
點(diǎn)評(píng):本題考查線面角,解題的關(guān)鍵是正確作出線面角,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西區(qū)模擬)已知
a
b
是兩個(gè)互相垂直的單位向量,且
c
a
=
c
d
=1
,|
c
|=
2
,則對(duì)任意的正實(shí)數(shù)t,|
c
+t
a
+
1
t
b
|
的最小值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西區(qū)模擬)已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=ax(x>0且a≠1),且f(log
1
2
4)=-3,則a
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西區(qū)模擬)一個(gè)等差數(shù)列第5項(xiàng)a5=10,且a1+a2+a3=3,則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西區(qū)模擬)如圖,三棱錐P-ABC中,PA⊥平面ABC,PA=2,△ABC是邊長(zhǎng)為
3
的正三角形,點(diǎn)D是PB的中點(diǎn),則異面直線PA與CD所成角的正切值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西區(qū)模擬)將函數(shù)f(x)=
2
2
sin2x+
6
2
cox2x
的圖象如右平移
π
4
個(gè)單位后得到函數(shù)g(x)的圖象,則g(
π
4
)
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案