【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|2x+2|﹣|x﹣2|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2 t恒成立,求實數(shù)t的取值范圍.

【答案】解:(Ⅰ)函數(shù)f(x)=|2x+2|﹣|x﹣2|= , 當(dāng)x<﹣1時,不等式即﹣x﹣4>2,求得x<﹣6,∴x<﹣6.
當(dāng)﹣1≤x<2時,不等式即3x>2,求得x> ,∴ <x<2.
當(dāng)x≥2時,不等式即x+4>2,求得x>﹣2,∴x≥2.
綜上所述,不等式的解集為{x|x> 或x<﹣6}.
(Ⅱ)由以上可得f(x)的最小值為f(﹣1)=﹣3,若x∈R,f(x)≥t2 t恒成立,
只要﹣3≥t2 t,即2t2﹣7t+6≤0,求得 ≤t≤2.
【解析】(Ⅰ)根據(jù)函數(shù)f(x)= ,分類討論,求得f(x)>2的解集.(Ⅱ)由f(x)的解析式求得f(x)的最小值為f(﹣1)=﹣3,再根據(jù)f(﹣1)≥t2 ,求得實數(shù)t的取值范圍.
【考點精析】關(guān)于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-x+c定義在區(qū)間[0,1]上,x1,x2

[0,1],且x1≠x2,求證:

(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點橫坐標(biāo)構(gòu)成一個公差為 的等差數(shù)列,要得到g(x)=cos(ωx+ )的圖象,可將f(x)的圖象(
A.向右平移 個單位
B.向左平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由直線x+2y7=0上一點P引圓x2+y22x+4y+2=0的一條切線,切點為A,則|PA|的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點為,過的直線交于兩點,點的坐標(biāo)為.

(1)當(dāng)軸垂直時,求直線的方程;

(2)設(shè)為坐標(biāo)原點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底 的中點。

1)證明:直線平面;

2)點在棱上,且直線與底面所成角為,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點,P是雙曲線上一點, 到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時, 的面積為,求此雙曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時代的數(shù)學(xué)家祖暅提出體積的計算原理(祖暅原理):“冪勢既同,則積不容 異”.“勢’’即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處截得兩幾何體的截面積恒等,那么這兩個幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標(biāo)系中,圖1是一個形狀不規(guī)則的封閉圖形,圖2是一個上底為l的梯形,且當(dāng)實數(shù)t取[0,3]上的任意值時,直線y=t被圖l和圖2所截得的兩線段長始終相等,則圖l的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y2=4x的一條弦AB經(jīng)過焦點F,取線段OB的中點D,延長OA至點C,使|OA|=|AC|,過點C,D作y軸的垂線,垂足分別為E,G,則|EG|的最小值為

查看答案和解析>>

同步練習(xí)冊答案