分析 (1)由已知利用余弦定理可求cosA=$\frac{1}{2}$,結(jié)合范圍A∈(0,π),可求A的值;
(2)由已知及余弦定理整理可得c2-2c-3=0,解得c的值,即可利用三角形面積公式計算得解.
解答 (本小題滿分10分)
解:(1)∵b2+c2=a2+bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.…(5分)
(2)由余弦定理得 a2=b2+c2-2bccosA,
而a=$\sqrt{7}$,b=2,A=$\frac{π}{3}$,得7=4+c2-2c,即c2-2c-3=0,
因為c>0,所以c=3,
故△ABC的面積s=$\frac{1}{2}$bcsinA=$\frac{3\sqrt{3}}{2}$.…(10分)
點評 本題主要考查了余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1} | B. | {2} | C. | {-1,2} | D. | {-1,-2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com