【題目】某公司為了準(zhǔn)確把握市場,做好產(chǎn)品計劃,特對某產(chǎn)品做了市場調(diào)查:先銷售該產(chǎn)品50天,統(tǒng)計發(fā)現(xiàn)每天的銷售量分布在內(nèi),且銷售量的分布頻率
.
(Ⅰ)求的值.
(Ⅱ)若銷售量大于等于80,則稱該日暢銷,其余為滯銷,根據(jù)是否暢銷從這50天中用分層抽樣的方法隨機(jī)抽取5天,再從這5天中隨機(jī)抽取2天,求這2天中恰有1天是暢銷日的概率(將頻率視為概率).
【答案】(Ⅰ)(Ⅱ).
【解析】試題分析:
(Ⅰ)由題意得到關(guān)于n的不等式組,求解不等式組有,則可取5,6,7,8,9,結(jié)合頻率分布表的面積為1得到關(guān)于實數(shù)a的方程,解方程有.
(Ⅱ)由題意可得滯銷日與暢銷日的頻率之比為,則抽取的5天中,滯銷日有2天,記為,暢銷日有3天,記為,據(jù)此列出所有可能的事件,結(jié)合古典概型計算公式可得所求概率為.
試題解析:
(Ⅰ)由題知,解得,
可取5,6,7,8,9,
代入中,得 , .
(Ⅱ)滯銷日與暢銷日的頻率之比為,則抽取的5天中,滯銷日有2天,記為,暢銷日有3天,記為,
再從這5天中抽出2天,基本事件有,共10個,
2天中恰有1天為暢銷日的事件有,共6個,則所求概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若對任意的, 都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足,數(shù)列的前項和為,且滿足.
(1)求數(shù)列和的通項公式;
(2)數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 15 | 10 | 10 | 5 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 5 | 10 | 10 | 20 | 5 |
(1)現(xiàn)從甲公司記錄的50天中隨機(jī)抽取3天,求這3天送餐單數(shù)都不小于40的概率;
(2)若將頻率視為概率,回答下列兩個問題:
①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;
②小王打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的首項為,公差為,等比數(shù)列的首項為,公比為.
(Ⅰ)若數(shù)列的前項和,求, 的值;
(Ⅱ)若, ,且.
(i)求的值;
(ii)對于數(shù)列和,滿足關(guān)系式, 為常數(shù),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方形中, , 是中點(圖1).將△沿折起,使得(圖2)在圖2中:
(1)求證:平面 平面;
(2)在線段上是否存點,使得二面角為大小為,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對任意x>0,都有f′(x)>.
(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;
(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(3)請將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點x0,且e-2<f(x0)<2-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD. E,M分別為線段AB,PD的中點.
(I)求證:PE⊥平面ABCD;
(II)求證:PB//平面ACM;
(III)在棱CD上是否存在點G,使平面GAM⊥平面ABCD,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com