【題目】甲、乙兩人射擊,甲射擊一次中靶的概率是,乙射擊一次中靶的概率是,且是方程的兩個(gè)實(shí)根,已知甲射擊5次,中靶次數(shù)的方差是.
(1)求,的值;
(2)若兩人各射擊2次,至少中靶3次就算完成目標(biāo),則完成目標(biāo)概率是多少?
【答案】(1),;(2)
【解析】
(1)可以判斷甲射擊中靶的次數(shù)服從,利用二項(xiàng)分布的方差公式可以求出,再利用一元二次方程根與系數(shù)關(guān)系進(jìn)行求解即可;
(2))設(shè)甲乙兩人兩次射擊中分別中靶次數(shù)為事件 兩人且中靶成功的概率為P,根據(jù)獨(dú)立事件的概率公式進(jìn)行求解即可.
(1)由題意甲射擊中靶的次數(shù)服從,所以由可
得.又因?yàn)?/span>是方程的兩個(gè)實(shí)根,由根與系數(shù)關(guān)系可知:
,所以;
(2)設(shè)甲、乙兩人兩次射擊中分別中靶次數(shù)為事件(其中表示中靶的次數(shù)), “兩人各射擊2次,至少中靶3次”的概率為P,
因?yàn)?/span>是相互獨(dú)立事件,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若數(shù)列的前項(xiàng)和, ,求證:數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正整數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數(shù)).
(1)若k=,t=,數(shù)列{an}是等差數(shù)列,求a1的值;
(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長為的正三角形,,且,分別是,中點(diǎn),則異面直線與所成角的余弦值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且,,數(shù)列滿足,且
(I)求數(shù)列,的通項(xiàng)公式;
(II)令,求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊AB,BC,AC的長依次成等差數(shù)列,且|AB|>|AC|,B(-1,0),C(1,0),則頂點(diǎn)A的軌跡方程為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)若恒成立,求的取值范圍;
(3)已知,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線和拋物線相交于不同兩點(diǎn)A,B.
(I)求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)AB的中點(diǎn)為M,拋物線C的焦點(diǎn)為F.以MF為直徑的圓與直線l相交于另一點(diǎn)N,且滿足,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com