已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)
在(0,4]上是減函數(shù),在[4,+∞)上是增函數(shù),求b的值.
(2)設(shè)常數(shù)c∈[1,4],求函數(shù)f(x)=x+
c
x
(1≤x≤2)
的最大值和最小值;
(3)當(dāng)n是正整數(shù)時,研究函數(shù)g(x)=xn+
c
xn
(c>0)
的單調(diào)性,并說明理由.
分析:(1)根據(jù)題設(shè)條件知
2b
=4,由此可知b=4.
(2)由
c
∈[1,2],知當(dāng)x=
c
時,函數(shù)f(x)=x+
c
x
取得最小值2
c
.再由c的取值判斷函數(shù)f(x)=x+
c
x
(1≤x≤2)
的最大值和最小值.
(3)設(shè)0<x1<x2,g(x2)-g(x1)=
x
n
2
+
c
x
n
2
-
x
n
1
-
c
x
n
1
=(
x
n
2
-
x
n
1
)(1-
c
x
n
1
x
n
2
)
.由此入手進(jìn)行單調(diào)性的討論.
解答:解:(1)由已知得
2b
=4,
∴b=4.
(2)∵c∈[1,4],
c
∈[1,2],
于是,當(dāng)x=
c
時,函數(shù)f(x)=x+
c
x
取得最小值2
c

f(1)-f(2)=
c-2
2
,
當(dāng)1≤c≤2時,函數(shù)f(x)的最大值是f(2)=2+
c
2
;
當(dāng)2≤c≤4時,函數(shù)f(x)的最大值是f(1)=1+c.
(3)設(shè)0<x1<x2,g(x2)-g(x1
=
x
n
2
+
c
x
n
2
-
x
n
1
-
c
x
n
1
=(
x
n
2
-
x
n
1
)(1-
c
x
n
1
x
n
2
)

當(dāng)
2nc
<x1<x2時,g(x2)>g(x1),函數(shù)g(x)在[
2nc
,+∞)上是增函數(shù);
當(dāng)0<x1<x2
2nc
時,g(x2)>g(x1),函數(shù)g(x)在(0,
2nc
]上是減函數(shù).
當(dāng)n是奇數(shù)時,g(x)是奇函數(shù),
函數(shù)g(x)在(-∞,-
2nc
]上是增函數(shù),在[-
2nc
,0)上是減函數(shù).
當(dāng)n是偶數(shù)時,g(x)是偶函數(shù),
函數(shù)g(x)在(-∞,-
2nc
)上是減函數(shù),在[-
2nc
,0]上是增函數(shù).
點(diǎn)評:本題考查函數(shù)的性質(zhì)和應(yīng)用,解題要認(rèn)真審題,仔細(xì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(Ⅰ)如果函數(shù)y=x+
2b
x
(x>0)的值域為[6,+∞),求b的值;
(Ⅱ)研究函數(shù)y=x2+
c
x2
(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(Ⅲ)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=(x2+
1
x
n+(
1
x2
+x
n(n是正整數(shù))在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
旦(a>0)有如下的性質(zhì):在區(qū)間(0,
a
]上單調(diào)遞減,在[
a
,+∞)上單調(diào)遞增.
(1)如果函數(shù)f(x)=x+
2b
x
在(0,4]上單調(diào)遞減,在[4,+∞)上單調(diào)遞增,求常數(shù)b的值.
(2)設(shè)常數(shù)a∈[l,4],求函數(shù)y=x+
a
x
在x∈[l,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
上是減函數(shù),在
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
在(0,4)上是減函數(shù),在(4,+∞)上是增函數(shù),求實(shí)常數(shù)b的值;
(2)設(shè)常數(shù)c∈1,4,求函數(shù)f(x)=x+
c
x
(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
(x>0)有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
b2
x
(x>0)的值域為[6,+∞),求b的值;
(2)研究函數(shù)y=x2+
c
x2
(x>0,常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并用定義證明(若有多個單調(diào)區(qū)間,請選擇一個證明);
(3)對函數(shù)y=x+
a
x
和y=x2+
a
x2
(x>0,常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在區(qū)間[
1
2
,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù),
(1)如果函數(shù)y=x+
3m
x
(x>0)
的值域是[6,+∞),求實(shí)數(shù)m的值;
(2)研究函數(shù)f(x)=x2+
a
x2
(常數(shù)a>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)若把函數(shù)f(x)=x2+
a
x2
(常數(shù)a>0)在[1,2]上的最小值記為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案