已知圓C1:x2+y2-4x+6y=0和圓C2:x2+y2-6x=0交于A、B兩點(diǎn),則AB的垂直平分線方程為

[  ]

A.x+y+3=0

B.2x-y-5=0

C.3x-y-9=0

D.4x-3y+7=0

答案:C
解析:

由平面幾何知識(shí),知AB的垂直平分線即為兩圓心的連線,把兩圓分別化為標(biāo)準(zhǔn)式可得兩圓心分別為C1(2,-3),C2(3,0),因?yàn)镃1C2斜率為3,所以直線方程為y-0=3(x-3),化為一般式可得3x-y-9=0.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州二模)已知圓C1:x2+y2=2和圓C2,直線l與C1切于點(diǎn)M(1,1),圓C2的圓心在射線2x-y=0(x≥0)上,且C2經(jīng)過(guò)坐標(biāo)原點(diǎn),如C2被l截得弦長(zhǎng)為4
3

(1)求直線l的方程;
(2)求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1x2+y2=4,圓C2x2+y2=25.點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M是圓C2上的一動(dòng)點(diǎn),線段OM交圓C1于N,過(guò)點(diǎn)M作x軸的垂線交x軸于M0,過(guò)點(diǎn)N作M0M的垂線交M0M于P.
(1)當(dāng)動(dòng)點(diǎn)M在圓C2上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡C的方程.
(2)設(shè)直線l:y=
x
5
+m
與軌跡C交于不同的兩點(diǎn),求實(shí)數(shù)m的取值范圍.
(3)當(dāng)m=
5
5
時(shí),直線l與軌跡C相交于A,B兩點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1x2+y2-2x-4y+4=0
(Ⅰ)若直線l:x+2y-4=0與圓C1相交于A,B兩點(diǎn).求弦AB的長(zhǎng);
(Ⅱ)若圓C2經(jīng)過(guò)E(1,-3),F(xiàn)(0,4),且圓C2與圓C1的公共弦平行于直線2x+y+1=0,求圓C2的方程.
(Ⅲ)求證:不論實(shí)數(shù)λ取何實(shí)數(shù)時(shí),直線l1:2λx-2y+3-λ=0與圓C1恒交于兩點(diǎn),并求出交點(diǎn)弦長(zhǎng)最短時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+(y+5)2=5,設(shè)圓C2為圓C1關(guān)于直線l對(duì)稱的圓,則在x軸上是否存在點(diǎn)P,使得P到兩圓的切線長(zhǎng)之比為
2
?薦存在,求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高一版(A必修2) 2009-2010學(xué)年 第23期 總179期 人教課標(biāo)高一版 題型:044

圓心在同一條直線上,且相鄰的圓彼此外切的一組圓叫做“糖葫蘆圓”.如圖,若在“糖葫蘆圓”中,已知圓C1:x2+(y-1)2=2,圓C3:(x-6)2+(y-7)2=2,求圓C2的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案