已知直線
x=t
y=1-4t
(t為參數(shù))
與拋物線y=x2+a交于A、B兩點,則實數(shù)a的取值范圍是
 
分析:本題考查直線的參數(shù)方程與普通方程之間的互化問題
解答:解:將直線的普通方程為y=1-4x代入y=x2+a,
整理得:x2+4x+a-1=0,
由條件知,△=16-4(a-1)>0,
解出a<5.
點評:判斷直線與圓錐曲線的問題關(guān)系,可聯(lián)立方程組,利用方程組解得情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知兩點O(0,0),B(2
2
,
π
4
).
(1)求以O(shè)B為直徑的圓C的極坐標(biāo)方程,然后化成直角方程;
(2)以極點O為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)).若直線l與圓C相交于M,N兩點,圓C的圓心為C,求△MNC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在二題中任選一題作答,如果多做,則按所做的第一題評分)
(1)(幾何證明選做題)如圖,已知RT△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則
BD
DA
=
16
9
16
9

(2)(坐標(biāo)系與參數(shù)方程選做題)已知圓C的圓心是直線
x=t
y=1+t
(t為參數(shù))與x軸的交點,且圓C與直線x+y+3=0相切.則圓C的方程為
(x+1)2+y2=2
(x+1)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線
x=1+t
y=4-2t
(t∈R)與圓
x=2cosθ+2
y=2sinθ
(θ∈[0,2π])相交于AB,則以AB為直徑的圓的面積為
16π
25
16π
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心是直線
x=t
y=1+t
(t為參數(shù))與x軸的交點,且圓C與直線x+y+3=0相切,則圓C的方程為
 

查看答案和解析>>

同步練習(xí)冊答案