8.$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$=( 。
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 利用三角函數(shù)的恒等變換化簡所給的式子,可得結(jié)果.

解答 解:$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$=$\frac{2sin50°+cos10°•\frac{cos10°+\sqrt{3}sin10°}{cos10°}}{cos50°+sin50°}$
=$\frac{2sin50°+2sin(10°+30°)}{cos50°+sin50°}$=$\frac{2(sin50°+cos50°)}{cos50°+sin50°}$=2,
故選:A.

點評 本題主要考查三角函數(shù)的恒等變換及化簡求值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在實數(shù)集R中定義一種運算“*”,對于任意給定的a,b∈R,a*b為唯一確定的實數(shù),且具有性質(zhì):
(1)對任意a,b∈R,a*b=b*a;
(2)對任意a∈R,a*0=a;
(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(ex)*$\frac{1}{e^x}$的性質(zhì),有如下命題:
(1)f(x)為偶函數(shù);
(2)f(x)的x=0處取極小值;
(3)f(x)的單調(diào)增區(qū)間為(-∞,0];
(4)方程f(x)=4有唯一實根.
其中正確的命題的序號是(1)(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和Sn滿足Sn+1=Sn+$\frac{n+1}{3n}$•an(n∈N*),且a1=1.
(Ⅰ)證明:數(shù)列{$\frac{{a}_{n}}{n}$}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{alnx+(x-c)^{2},x≥c}\\{alnx-(x-c)^{2},0<x<c}\end{array}\right.$(其中a<0,c>0)
(1)當(dāng)a=2c-2時,若f(x)≥$\frac{1}{4}$對任意x∈(c,+∞)恒成立,求實數(shù)a的取值范圍;
(2)設(shè)函數(shù)f(x)的圖象在兩點P(x1,f(x1)),Q(x2,f(x2)處的切線分別為l1、l2,若x1=$\sqrt{-\frac{a}{2}}$,x2=c,且l1丄l2,求實數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若實數(shù)x,y滿足方程x2+y2-4x+1=0,則x2+y2的最大值是7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=[x2-(a-3)x-b](2x-$\frac{1}{2}$),當(dāng)x<0時,f(x)≤0,則a的取值范圍為( 。
A.a≥2B.a≤2C.a<2D.0<a<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=1,Sn=2n-an(n∈N*).
(1)計算a2,a3,a4,并由此猜想通項公式an
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.A={(x,y)|y=2x+5},B={(x,y)|y=1-2x},則A∩B={(-1,3)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.以下關(guān)于導(dǎo)數(shù)和極值點的說法中正確的是( 。
A.可導(dǎo)函數(shù)f(x)為增函數(shù)的充要條件是f'(x)>0.
B.若f(x)可導(dǎo),則f'(x0)=0是x0為f(x)的極值點的充要條件.
C.f(x)在R上可導(dǎo),若?x1,x2∈R,且x1≠x2,$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>2017$,則?x∈R,f'(x)>2017.
D.若奇函數(shù)f(x)可導(dǎo),則其導(dǎo)函數(shù)f'(x)為偶函數(shù).

查看答案和解析>>

同步練習(xí)冊答案