5.已知函數(shù)$f(x)=2{cos^2}x-2\sqrt{3}sinxcosx$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)-m=1在$[{-\frac{5π}{12},0}]$上有兩個(gè)不等實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得:f(x)=2cos(2x+$\frac{π}{3}$)+1,利用周期公式可求最小正周期,由$2kπ-π≤2x+\frac{π}{3}≤2kπ,(k∈Z)$,即可解得f(x)的單調(diào)遞增區(qū)間.
(2)由$x∈[-\frac{5π}{12},0]$,可求$cos(2x+\frac{π}{3})∈[0,1]$,函數(shù)f(x)的值域?yàn)閇1,3],由f(x)有兩個(gè)不等實(shí)數(shù)解,利用余弦函數(shù)的圖象和性質(zhì)可得:f(x)∈[2,3),而f(x)=m+1,從而可得2≤m+1<3,即可解得m的取值范圍.

解答 解:(1)∵$f(x)=2{cos^2}x-2\sqrt{3}sinxcosx=2•\frac{1+cos2x}{2}-\sqrt{3}sin2x$=$1+cos2x-\sqrt{3}sin2x=2cos(2x+\frac{π}{3})+1$,
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π.
由$2kπ-π≤2x+\frac{π}{3}≤2kπ,(k∈Z)$,解得,$kπ-\frac{2π}{3}≤x≤kπ-\frac{π}{6},(k∈Z)$.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為:$[kπ-\frac{2π}{3},kπ-\frac{π}{6}],(k∈Z)$.
(2)∵$x∈[-\frac{5π}{12},0]$,
∴$2x+\frac{π}{3}∈[-\frac{π}{2},\frac{π}{3}]$,
∴$cos(2x+\frac{π}{3})∈[0,1]$,
∴函數(shù)f(x)的值域?yàn)閇1,3],
而方程f(x)-m=1,變形為f(x)=m+1,
∵f(x)有兩個(gè)不等實(shí)數(shù)解,利用余弦函數(shù)的圖象和性質(zhì)可得:f(x)∈[2,3),
∴2≤m+1<3,即1≤m<2,
∴m∈[1,2).

點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,周期公式,余弦函數(shù)的圖象和性質(zhì),不等式的解法及應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)F的距離|MF|=2p,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x+m在區(qū)間[0,$\frac{π}{2}$]上的最大值為3,則m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x-2.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)當(dāng)x∈[$\frac{π}{4}$,$\frac{3π}{4}$]時(shí),求函數(shù)f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,AC=7,∠B=$\frac{2π}{3}$,△ABC的面積S=$\frac{15\sqrt{3}}{4}$,則邊AB的長(zhǎng)為3或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,直線y=kx與函數(shù)y=lnx相切于點(diǎn)P(m,n),則函數(shù)f(x)=lnx-kx在x=e處,取得極大值,為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知等差數(shù)列{an},S5=10,則a3=(  )
A..0B..1C..2D..3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)P(x,y)是曲線C:(x+2)2+y2=1上任意一點(diǎn),則$\frac{y}{x}$的取值范圍是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.方程log2(3x+2)=1+log2(x+2)的解為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案