3.函數(shù)f(x)=4sin3x-sinx+2(sin$\frac{x}{2}$-cos$\frac{x}{2}$)2的最小正周期為$\frac{2π}{3}$.

分析 利用三角恒等變換,將f(x)化簡,求得f(x)=-sin3x+2,故可求得函數(shù)的最小正周期.

解答 解:f(x)=4sin3x-sinx+2(sin$\frac{x}{2}$-cos$\frac{x}{2}$)2,
=4sin3x-sinx+2(sin2$\frac{x}{2}$+cos2$\frac{x}{2}$)-4sin$\frac{x}{2}$•cos$\frac{x}{2}$,
=4sin3x-sinx-2sinx+2,
=4sin3x-3sinx+2,
=2sin3x-2sinx+2sin3x-sinx+2
=2sinx(sin2x-1)+sinx(2sin2x-1)+2
=-2sinxcosxcosx-sinxcos2x+2
=-(sin2xcosx+cos2xsinx)+2
=-sin3x+2
∴f(x)的最小正周期為:$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.

點評 本題考查三角恒等變換、二倍角公式以及利用周期的定義求三角函數(shù)的周期,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}的通項公式是an=$\frac{1}{{n}^{2}+5n+4}$.
(1)你能判斷該數(shù)列是遞增的,還是遞減的嗎?
(2)該數(shù)列中有負數(shù)項嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合M={y|y=x2-1,x∈R},N={x|y=$\sqrt{4-{x^2}}$},則M∩N=( 。
A.[-1,2]B.[-1,+∞)C.[2,+∞)D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,$\frac{π}{3}$<α<π,則求sin($\frac{π}{12}$-α)=(  )
A.-$\frac{4+\sqrt{2}}{8}$B.-$\frac{4-\sqrt{2}}{8}$C.-$\frac{4-\sqrt{2}}{6}$D.-$\frac{4+\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.要從已編號(1至120)的120件產(chǎn)品中隨機抽取10件進行檢驗,用系統(tǒng)抽樣的方法抽出樣本.若在第1段中抽出的樣本編號為7,則在抽出的樣本中最大的編號為( 。
A.114B.115C.116D.117

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設y=f(x)是R上的奇函數(shù),且f(x+2)=-f(x),當0≤x≤1時,f(x)=x,寫出函數(shù)f(x)在R上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若按向量$\overrightarrow{a}$=(-3,4)平移圓C:x2+y2+4y=5,得到圓C′,則圓C′的半徑與圓心坐標分別為( 。
A.3,(-3,2)B.3,(-5,4)C.9,(-5,4)D.9,(-3,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知i為虛數(shù)單位,復數(shù)z=$\frac{1-2i}{a+i}$的實部與虛部互為相反數(shù),則實數(shù)a=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.要將兩種大小不同的較大塊兒鋼板,裁成A,B,C三種規(guī)格的小鋼板,每張較大塊兒鋼板可同時裁成的三種規(guī)格小鋼板的塊數(shù)如下表:
 
A規(guī)格

B規(guī)格

C規(guī)格
第一種鋼板   2    1     1
第二種鋼板   1    3     1
第一種鋼板面積為1m2,第二種鋼板面積為2m2,今分別需要A規(guī)格小鋼板15塊,B規(guī)格小鋼板27塊,C規(guī)格小鋼板13塊.
(1)設需裁第一種鋼板x張,第二種鋼板y張,用x,y列出符合題意的數(shù)學關系式,并在給出的平面直角坐標系中畫出相應的平面區(qū)域;
(2)在滿足需求的條件下,問各裁這兩種鋼板多少張,所用鋼板面積最小?

查看答案和解析>>

同步練習冊答案