3.要將兩種大小不同的較大塊兒鋼板,裁成A,B,C三種規(guī)格的小鋼板,每張較大塊兒鋼板可同時裁成的三種規(guī)格小鋼板的塊數(shù)如下表:
 
A規(guī)格

B規(guī)格

C規(guī)格
第一種鋼板   2    1     1
第二種鋼板   1    3     1
第一種鋼板面積為1m2,第二種鋼板面積為2m2,今分別需要A規(guī)格小鋼板15塊,B規(guī)格小鋼板27塊,C規(guī)格小鋼板13塊.
(1)設(shè)需裁第一種鋼板x張,第二種鋼板y張,用x,y列出符合題意的數(shù)學(xué)關(guān)系式,并在給出的平面直角坐標(biāo)系中畫出相應(yīng)的平面區(qū)域;
(2)在滿足需求的條件下,問各裁這兩種鋼板多少張,所用鋼板面積最小?

分析 本題考查的知識點是簡單的線性規(guī)劃的應(yīng)用,根據(jù)已知條件中解:設(shè)用第一種鋼板x張,第二種鋼板y張,則可做A種的為2x+y個,B種的為x+3y個,C種的為x+y個由題意得出約束條件及目標(biāo)函數(shù),然后利用線性規(guī)劃,求出最優(yōu)解.

解答 解:(1)設(shè)需截第一種鋼板x張,第二種鋼板y張,所用鋼板數(shù)為z,
則有$\left\{\begin{array}{l}{2x+y≥15}\\{x+3y≥27}\\{x+y≥13}\\{x≥0}\\{y≥0}\end{array}\right.$,作出可行域(如圖),
,
(2)設(shè)所用鋼板的面積是zm2,目標(biāo)函數(shù)為z=x+2y,
∴y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由$\left\{\begin{array}{l}{x+3y=27}\\{x+y=13}\end{array}\right.$ 得M(6,7),
結(jié)合圖象得z的最小值是6+2×7=20,
故在滿足需求的條件下,裁第一種鋼板6張,第二種鋼板7張,所用鋼板面積最。

點評 在解決線性規(guī)劃的應(yīng)用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件⇒②由約束條件畫出可行域⇒③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系⇒④使用平移直線法求出最優(yōu)解⇒⑤還原到現(xiàn)實問題中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=4sin3x-sinx+2(sin$\frac{x}{2}$-cos$\frac{x}{2}$)2的最小正周期為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=loga|ax2-x|在[1,2]上單調(diào),則實數(shù)a的取值范圍是(0,$\frac{1}{4}$]∪{$\frac{1}{2}$}∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-(-1)k2alnx(k∈N,a∈R且a>0).
(1)求f(x)的極值;
(2)若k=2016,關(guān)于x的方程f(x)=2ax有唯一解,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某地區(qū)某商品的零售價格每周不斷發(fā)生變化,但呈現(xiàn)如下規(guī)律:本周價格a元時,下周價格以概率p升1元或以概率1-p降1元,若第一周的價格為20元.
(I)若p=$\frac{1}{2}$,求第五周價格仍為20元的概率;
(Ⅱ)若p=$\frac{2}{3}$,第五周的價格為X元,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.分別求滿足下列條件的直線l的方程:
(1)過點A(0,2),且直線l的傾斜角的正弦值是0.5;
(2)過點A(2,1),且直線l的傾斜角是直線l1:3x+4y+5=0的傾斜角的一半.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a>b>0,試指出$\frac{a+b}{2}$-$\sqrt{ab}$,$\frac{(a-b)^{2}}{8a}$,$\frac{(a-b)^{2}}{8b}$的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F與拋物線y2=4x的焦點重合,且橢圓的離心率為$\frac{\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C上是否存在關(guān)于直線l:x+y=$\frac{1}{5}$對稱的兩點A、B,若存在,求出直線AB的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某射擊游戲規(guī)則如下:①射手共射擊三次:;②首先射擊目標(biāo)甲;③若擊中,則繼續(xù)射擊該目標(biāo),若未擊中,則射擊另一目標(biāo);④擊中目標(biāo)甲、乙分別得2分、1分,未擊中得0分.已知某射手擊中甲、乙目標(biāo)的概率分別為$\frac{1}{2},\frac{3}{4}$,且該射手每次射擊的結(jié)果互不影響.
(Ⅰ)求該射手連續(xù)兩次擊中目標(biāo)且另一次未擊中目標(biāo)的概率;
(Ⅱ)記該射手所得分?jǐn)?shù)為X,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

同步練習(xí)冊答案