A規(guī)格 | B規(guī)格 | C規(guī)格 | |
第一種鋼板 | 2 | 1 | 1 |
第二種鋼板 | 1 | 3 | 1 |
分析 本題考查的知識點是簡單的線性規(guī)劃的應(yīng)用,根據(jù)已知條件中解:設(shè)用第一種鋼板x張,第二種鋼板y張,則可做A種的為2x+y個,B種的為x+3y個,C種的為x+y個由題意得出約束條件及目標(biāo)函數(shù),然后利用線性規(guī)劃,求出最優(yōu)解.
解答 解:(1)設(shè)需截第一種鋼板x張,第二種鋼板y張,所用鋼板數(shù)為z,
則有$\left\{\begin{array}{l}{2x+y≥15}\\{x+3y≥27}\\{x+y≥13}\\{x≥0}\\{y≥0}\end{array}\right.$,作出可行域(如圖),
,
(2)設(shè)所用鋼板的面積是zm2,目標(biāo)函數(shù)為z=x+2y,
∴y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由$\left\{\begin{array}{l}{x+3y=27}\\{x+y=13}\end{array}\right.$ 得M(6,7),
結(jié)合圖象得z的最小值是6+2×7=20,
故在滿足需求的條件下,裁第一種鋼板6張,第二種鋼板7張,所用鋼板面積最。
點評 在解決線性規(guī)劃的應(yīng)用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件⇒②由約束條件畫出可行域⇒③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系⇒④使用平移直線法求出最優(yōu)解⇒⑤還原到現(xiàn)實問題中.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com