【題目】已知函數(shù)y=f(x)滿足f(x﹣1)=2x+3a,且f(a)=7.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=xf(x)+λf(x)+x在[0,2]上最大值為2,求實數(shù)λ的值.
【答案】
(1)解:f(x﹣1)=2x+3a=2(x﹣1)+3a+2,
則f(x)=2x+3a+2,
∵f(a)=7,
∴2a+3a+2=7,
解得a=1,
∴f(x)=2x+5
(2)解:g(x)=xf(x)+λf(x)+x=x(2x+5)+2λx+5λ=2x2+(6+2λ)x+5λ,
則其對稱軸為x=﹣ ,
當﹣ ≤0時,即λ≥﹣3時,函數(shù)g(x)在[0,2]上單調(diào)遞增,故g(x)max=g(2)=9λ+20,
當﹣ ≥2時,即λ≤﹣7時,函數(shù)g(x)在[0,2]上單調(diào)遞減,故g(x)max=g(0)=5λ,
當0<﹣ ≤1時,即﹣5≤λ<﹣3時,g(x)max=g(2)=9λ+20,
當1<﹣ <2時,即﹣7<λ<﹣5時,g(x)max=g(0)=5λ,
故,當λ≥﹣5時,g(x)max=g(2)=9λ+20=2,解得λ=﹣2,
當λ<﹣5時,g(x)max=g(0)=5λ=2,解的λ= ,舍去
綜上所述λ的值為﹣2
【解析】(1)根據(jù)配湊法即可求出函數(shù)的解析式,(2)化簡g(x),根據(jù)二次函數(shù)的性質(zhì),分類討論即可求出λ的值,
【考點精析】利用函數(shù)的最值及其幾何意義對題目進行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲担
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為(0,+∞)的函數(shù)f(x)滿足:
①x>1時,f(x)<0;
②f( )=1;
③對任意的正實數(shù)x,y,都有f(xy)=f(x)+f(y).
(1)求證:f( )=﹣f(x);
(2)求證:f(x)在定義域內(nèi)為減函數(shù);
(3)求滿足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c滿足f(2﹣x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),則log4m﹣ n的值是( )
A.小于1
B.等于1
C.大于1
D.由b的符號確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+ ,(a∈R,e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a=1時,若直線l:y=kx﹣1與曲線y=f(x)沒有公共點,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科技公司生產(chǎn)一種手機加密芯片,其質(zhì)量按測試指標劃分為:指標大于或等于為合格品,小于為次品.現(xiàn)隨機抽取這種芯片共件進行檢測,檢測結(jié)果統(tǒng)計如表:
測試指標 | |||||
芯片數(shù)量(件) |
已知生產(chǎn)一件芯片,若是合格品可盈利元,若是次品則虧損元.
(Ⅰ)試估計生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)件芯片所獲得的利潤不少于元的概率.
(Ⅱ)記為生產(chǎn)件芯片所得的總利潤,求隨機變量的分布列和數(shù)學期望
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】廣播電臺為了了解某地區(qū)的聽眾對某個戲曲節(jié)目的收聽情況,隨機抽取了100名聽眾進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的聽眾日均收聽該節(jié)目的頻率分布直方圖,將日均收聽該節(jié)目時間不低于40分鐘的聽眾成為“戲迷”
(1)根據(jù)已知條件完成2×2列聯(lián)表,并判斷“戲迷”與性別是否有關?
“戲迷” | 非戲迷 | 總計 | |
男 | |||
女 | 10 | 55 | |
總計 |
附:K2= ,
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
(2)將上述調(diào)查所得到的頻率當作概率.現(xiàn)在從該地區(qū)大量的聽眾中,采用隨機抽樣的方法每次抽取1名聽眾,抽取3次,記被抽取的3名聽眾中“戲迷”的人數(shù)為X,若每次抽取的結(jié)果相互獨立,求X的分布列,數(shù)學期望及方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過點P(m,0),且傾斜角為 .以O為極點,以x軸正半軸為極軸,建立坐標系.
(1)寫出曲線C的極坐標方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點,且|PA||PB|=1,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com