【題目】平面直角坐標(biāo)系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過(guò)點(diǎn)P(m,0),且傾斜角為 .以O(shè)為極點(diǎn),以x軸正半軸為極軸,建立坐標(biāo)系.
(1)寫(xiě)出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.
【答案】
(1)解:曲線C:(x﹣1)2+y2=1.展開(kāi)為:x2+y2=2x,可得ρ2=2ρcosθ,即曲線C的極坐標(biāo)方程為ρ=2cosθ.
直線l的參數(shù)方程為: ,(t為參數(shù)).
(2)解:設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2.把直線l的參數(shù)方程代入x2+y2=2x,可得:t2+( )t+m2﹣2m=0,∴t1t2=m2﹣2m.
∵|PA||PB|=1,∴|m2﹣2m|=1,解得m=1或1±
【解析】(1)曲線C:(x﹣1)2+y2=1.展開(kāi)為:x2+y2=2x,把 代入可得曲線C的極坐標(biāo)方程.直線l的參數(shù)方程為: ,(t為參數(shù)).(2)設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1 , t2 . 把直線l的參數(shù)方程圓的方程可得:t2+( )t+m2﹣2m=0,利用|PA||PB|=1,可得|m2﹣2m|=1,解得m即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)滿足f(x﹣1)=2x+3a,且f(a)=7.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=xf(x)+λf(x)+x在[0,2]上最大值為2,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)= 的定義域集合是A,函數(shù)g(x)=lg[x2﹣(2a+1)x+a2+a]的定義域集合是B.
(1)求集合A,B.
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列滿足: , .為數(shù)列的前項(xiàng)和.
(Ⅰ)求證:對(duì)任意正整數(shù),有;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意,總存在正整數(shù),使得時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬(wàn)元),其中固定成本為2.8萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬(wàn)元)滿足 ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫(xiě)出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷售收入﹣總成本);
(2)要使工廠有盈利,求產(chǎn)量x的范圍;
(3)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)A∩B;
(2)若C={x|x≥a},且B∩C=B,求a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,x∈[2,4].
(1)判斷f(x)的單調(diào)性,并利用單調(diào)性的定義證明:
(2)求f(x)在[2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)= ,則g[f(﹣7)]=( )
A.3
B.﹣3
C.2
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和為Sn=2an﹣2,數(shù)列{bn}是首項(xiàng)為a1 , 公差不為零的等差數(shù)列,且b1 , b3 , b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn= ,前n項(xiàng)和為Pn , 對(duì)于n∈N*不等式 Pn<t恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com