分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;
(2)令F(x)=f(x)-g(x),求出F(x)的導數(shù),得到函數(shù)的單調(diào)性,求出F(x)>0,進而證出結論;
(3)(i)根據(jù)函數(shù)f(x)的單調(diào)性求出t的范圍即可;(ii)設出x1<$\frac{1}{a}$<x2,得到f(x2)>f($\frac{2}{a}$-x2),結合函數(shù)的單調(diào)性證出即可.
解答 解:(1)f′(x)=a•eax(ax-2)+a•eax=a•eax(ax-1),令f′(x)=0,解得x=$\frac{1}{a}$;
當x變化時,f′(x),f(x)的變化情況如下表:
x | (-∞,2) | 2 | (2,+∞) |
f′(x) | - | 0 | + |
f(x) | ↘ | 極大值$\frac{1}{e2}$ | ↗ |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及函數(shù)恒成立問題,是一道綜合題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $±\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | ±$\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(-3)+f(3)<2f(1) | B. | f(-3)+f(7)>2f(1) | C. | f(-3)+f(3)≤2f(1) | D. | f(-3)+f(7)≥2f(1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(a)≥eaf(0) | B. | f(a)>eaf(0) | C. | f(a)≤eaf(0) | D. | f(a)<eaf(0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(cosA)<f(cosB) | B. | f(sinA)<f(cosB) | C. | f(sinA)>f(cosB) | D. | f(sinA)>f(sinB) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com