(選修4—1 幾何證明選講)如圖,已知是圓的切線,為切點,過做圓的一條割線交圓于、兩點,為弦的中點,若圓心在∠的內(nèi)部,則∠+∠的度數(shù)為: ;
科目:高中數(shù)學(xué) 來源: 題型:
選修4—4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,已知點的直角坐標(biāo)為,點的極坐標(biāo)為,若直線過點,且傾斜角為,圓以為 圓心、為半徑。
(1)求直線的參數(shù)方程和圓的極坐標(biāo)方程;
(2)試判定直線和圓的位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
選修4—5:不等式選講
已知函數(shù)
(1)解關(guān)于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
選修4—4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,已知點的直角坐標(biāo)為,點的極坐標(biāo)為,若直線過點,且傾斜角為,圓以為 圓心、為半徑。
(1)求直線的參數(shù)方程和圓的極坐標(biāo)方程;
(2)試判定直線和圓的位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
選修4—1:幾何證明選講
D、E分別為△ABC的邊AB、AC上的點,且不與△ABC的頂點重合。已知AE的長為,AC的長為,AD、AB的長是關(guān)于的方程的兩個根。
(1)證明:C、B、D、E四點共圓;
(2)若∠A=90°,,且,求C、B、D、E所在圓的半徑。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com