(12分)設(shè)數(shù)列{an},{bn}都是等差數(shù)列,它們的前n項(xiàng)的和分別為Sn , Tn,若對(duì)一切nN*,都有Sn+3 = Tn.(1)若a1b1,試分別寫出一個(gè)符號(hào)條件的數(shù)列{an}和{bn};(2)若a1 + b1 = 1,數(shù)列{cn}滿足:cn = 4 an + l(–1)n–12bn,且當(dāng)nN*時(shí),cn+1cn恒成立,求實(shí)數(shù)l的最大值.
(2)
(1)答案不唯一,例如
(2)設(shè)數(shù)列的公差分別是,

對(duì)一切,有,   
即:
 即



時(shí),恒成立,即時(shí),恒成立
當(dāng)為正奇數(shù)時(shí),恒成立,而,
當(dāng)為正偶數(shù)時(shí),恒成立,而,
    的最大值是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在{an}中,a1=15,3an+1=3an-2(n∈N*),則該數(shù)列中相鄰兩項(xiàng)的乘積為負(fù)數(shù)的項(xiàng)是        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)數(shù)列的前項(xiàng)和為,
(Ⅰ)求數(shù)列的通項(xiàng);(Ⅱ)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((12分)已知函數(shù).
(Ⅰ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;
(Ⅱ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意nÎN+bn<成立.若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)在數(shù)列
(I)求 (II)設(shè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)記不超過的最大整數(shù)為[],令{}=-[],則{},[],()
A.是等差數(shù)列但不是等比數(shù)列B.是等比數(shù)列但不是等差數(shù)列
C.既是等差數(shù)列又是等比數(shù)列D.既不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
平面上有一系列的點(diǎn), 對(duì)于正整數(shù),點(diǎn)位于函數(shù)的圖像上,以點(diǎn)為圓心的軸相切,且又彼此外切,若,且
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè)的面積為,求證: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義“等和數(shù)列”,在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等和數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公和。已知數(shù)列是等和數(shù)列且,公和為5,那么的值為_______,且這個(gè)數(shù)列前21項(xiàng)和的值為_______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前項(xiàng)和為,若,則
A7         B. 6         C.  5         D.  4

查看答案和解析>>

同步練習(xí)冊(cè)答案