精英家教網 > 高中數學 > 題目詳情
過拋物線焦點的直線與拋物線交于兩點,,且中點的縱坐標為,則的值為______.

試題分析:設,所以,因為中點的縱坐標為,所以,所以,所以,而根據焦點弦公式可知,所以,兩式聯立可得.
點評:此類問題離不開設點,設方程,聯立方程組,一般難度不大,但是運算比較麻煩,所以要仔細計算.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為 
(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線的焦點為F,點為該拋物線上的動點,又點的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的上頂點為,左焦點為,直線與圓相切.過點的直線與橢圓交于兩點.
(I)求橢圓的方程;
(II)當的面積達到最大時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知是過拋物線焦點的弦,,則中點的橫坐標是        

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左焦點F為圓的圓心,且橢圓上的點到點F的距離最小值為。
(I)求橢圓方程;
(II)已知經過點F的動直線與橢圓交于不同的兩點A、B,點M(),證明:為定值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標平面上的動點,且直線PM與直線PN的斜率之積為常數m (m,m0),點P的軌跡加上MN兩點構成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點Q (2,0) 斜率為的直線與曲線C交于不同的兩點AB,AB中點為R,直線OR (O為坐標原點)的斜率為,求證 為定值;
(3) 在(2)的條件下,設,且,求y軸上的截距的變化范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓(為參數)的離心率是        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若雙曲線與直線無交點,則離心率的取值范圍( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案