已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng),第5項(xiàng),第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng),第3項(xiàng),第4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求數(shù)列數(shù)學(xué)公式的前n項(xiàng)和sn
(3)設(shè)數(shù)列{cn}對(duì)任意自然數(shù)n,均有數(shù)學(xué)公式,求c1+c2+c3+…+c2006值.

解:(1)∵等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,
且第2項(xiàng),第5項(xiàng),第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng),第3項(xiàng),第4項(xiàng),
∴(1+d)(1+13d)=(1+4d)2,
解得d=2.
an=1+(n-1)×2=2n-1.
∵b2=1+d=3,b3=1+4d=9,b4=1+13d=27,
∴bn=3n-1
(2)∵an=2n-1,
==),
∴數(shù)列的前n項(xiàng)和
Sn=[(1-)+(-)+…+(-)+()]=(1-)=
(3)∵bn=3n-1,an+1=2n+1,對(duì)任意自然數(shù)n,均有,
∴當(dāng)n=1時(shí),c1=3,
當(dāng)n≥2時(shí),=an+1-an=(2n+1)-(2n-1)=2,
∴cn=2•3n-1,
∴c1+c2+c3+…+c2006=3+2×3+2×32+…+2×32005=3+2×=3+3×32005-3=32006
分析:(1)由等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng),第5項(xiàng),第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng),第3項(xiàng),第4項(xiàng),知(1+d)(1+13d)=(1+4d)2,由此能求出數(shù)列{an}與{bn}的通項(xiàng)公式.
(2)由an=2n-1,知==),由此利用裂項(xiàng)求和法能求出數(shù)列的前n項(xiàng)和Sn
(3)由bn=3n-1,an+1=2n+1,對(duì)任意自然數(shù)n,均有,知當(dāng)n=1時(shí),c1=3,當(dāng)n≥2時(shí),cn=2•3n-1,由此能求出c1+c2+c3+…+c2006
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案