已知二次函數(shù),數(shù)列{an}的前n和Sn,點(n,Sn)(n∈N*)在函數(shù)y=f(x)的圖象上.
(1)求{an}的通項公式
(2)設(shè),求數(shù)列{bn}的前n項和Tn
【答案】分析:(1)根據(jù)點(n,Sn)(n∈N*)在函數(shù)y=f(x)的圖象上,可得,判斷數(shù)列{an}為等差數(shù)列,再求出等差數(shù)列的通項公式即可.
(2)把{an}的通項公式代入,化簡,再用裂項相消求數(shù)列{bn}的前n項和Tn
解答:解:(1)由題意得:∴數(shù)列{an}為等差數(shù)列
a1=s1=2,a2=s2-s1=5-2=3,∴d=a2-a1=3-2=1
∴an=n+1
(2)
點評:本題主要考察了等差數(shù)列的通項公式的求法,以及裂項相消求數(shù)列的前n項和,屬于數(shù)列的常規(guī)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c經(jīng)過點(0,0),導(dǎo)數(shù)f′(x)=2x+1,當(dāng)x∈[n,n+1](n∈N*)時,f(x)是整數(shù)的個數(shù)記為an
(1)求a、b、c的值;
(2)求數(shù)列{an}的通項公式;
(3)令bn=
2anan+1
,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=tx2+2tx(t≠0)
(Ⅰ)求不等式f(x)>1的解集;
(Ⅱ)若t=1,記Sn為數(shù)列{an}的前n項和,且a1=1,an>0),點(
Sn+1
+
Sn
,2an+1)
在函數(shù)f(x)的圖象上,求Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-mx+m(x∈R)同時滿足:(1)不等式f(x)≤0的解集有且只有一個元素;(2)在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項和Sn=f(n),bn=1-
8-man
,我們把所有滿足bi•bi+1<0的正整數(shù)i的個數(shù)叫做數(shù)列{bn}的異號數(shù).根據(jù)以上信息,給出下列五個命題:
①m=0;
②m=4;
③數(shù)列{an}的通項公式為an=2n-5;
④數(shù)列{bn}的異號數(shù)為2;
⑤數(shù)列{bn}的異號數(shù)為3.
其中正確命題的序號為
②⑤
②⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)數(shù)學(xué)公式,數(shù)列{an}的前n和Sn,點(n,Sn)(n∈N*)在函數(shù)y=f(x)的圖象上.
(1)求{an}的通項公式
(2)設(shè)數(shù)學(xué)公式,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案