分析:(I)根據(jù)題意和a
n=s
n-s
n-1(n≥2)進(jìn)行變形,再由等比數(shù)列的定義判斷得出;
(II)由(I)和題中所給的式子求出b
n后,再進(jìn)一步變形,判斷出
{}是等差數(shù)列,根據(jù)等差數(shù)列的通項(xiàng)公式求出{b
n}的通項(xiàng)公式;
(III)由前兩小題的結(jié)果求出C
n,再由錯(cuò)位相減法求出該數(shù)列的前n項(xiàng)和為T
n.
解答:解:(I)由S
n=(1+λ)-λa
n得,S
n-1=(1+λ)-λa
n-1(n≥2),
兩式相減得:a
n=-λa
n+λa
n-1,∴
=(n≥2),
∵λ≠-1,0,∴數(shù)列{a
n}是等比數(shù)列.
(II)由(I)知,
f(λ)=,
∵b
n=f(b
n-1)(n∈N
*),∴
bn=,即
=+1,
∴
{}是首項(xiàng)為
=2,公差為1的等差數(shù)列;
∴
=2+(n-1)=n+1,
則
bn=,
(III)λ=1時(shí),
q==,且a
1=1,∴
an=()n-1,
∴
Cn=an(-1)=()n-1n,
∴
Tn=1+2()+3()2+…+n()n-1,①
Tn=()+2()2+3()3+…+n()n②
②-①得:
Tn=1+()+()2+()3+…+()n-1-n()n,
∴
Tn=1+()+()2+()3+…+()n-1-n()n=2(1-()n)-n()n,
∴
Tn=4(1-()n)-2n()n.
點(diǎn)評:本題是數(shù)列的綜合題,涉及了等差數(shù)列、等比數(shù)列的通項(xiàng)公式,主要利用關(guān)系式an=sn-sn-1(n≥2)和構(gòu)造法進(jìn)行變形,還涉及了錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,考查了分析問題和解決問題的能力.