中,角A,B,C所對的邊分別為a,b,c,已知.
(1)當(dāng),且的面積為時(shí),求a的值;
(2)當(dāng)時(shí),求的值.

(1);(2).

解析試題分析:(1)此題綜合性較強(qiáng),首先根據(jù)三角形面積公式:,將代入得到的關(guān)系,根據(jù)余弦定理得到的關(guān)系,再根據(jù)同角基本關(guān)系式,列出關(guān)于的關(guān)系式,得出結(jié)果;(2)由已知然后再結(jié)合余弦定理,得的關(guān)系,然后結(jié)合得出的關(guān)系,從而判定三角形的形狀,由邊的關(guān)系得出角的三角函數(shù)值,結(jié)合已知消,得出三角函數(shù)值,考察知識(shí)點(diǎn)比較全面,靈活轉(zhuǎn)化公式之間的相互關(guān)系,進(jìn)行消元.
試題解析:(1)解:因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/45/4/1opu03.png" style="vertical-align:middle;" />,的面積為,
所以,
所以,               3分
,由余弦定理得,          5分
,所以,解得.     7分
(2)解:,,
由余弦定理得,,所以,,       9分
由正弦定理得,,             11分
所以.          13分
考點(diǎn):1.余弦定理;2.三角形面積公式;3.正弦定理;4同角基本關(guān)系式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a=(5cos x,cos x),b=(sin x,2cos x),設(shè)函數(shù)f(x)=a·b+|b|2.
(1)當(dāng)∈時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)x時(shí),若f(x)=8,求函數(shù)f的值;
(3)將函數(shù)yf(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的縱坐標(biāo)向下平移5個(gè)單位,得到函數(shù)yg(x)的圖象,求函數(shù)g(x)的表達(dá)式并判斷奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)在函數(shù)的圖象上,直線、圖象的任意兩條對稱軸,且的最小值為.
(1)求函數(shù)的單遞增區(qū)間和其圖象的對稱中心坐標(biāo);
(2)設(shè),,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)f(x)=Asin +1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α,f=2,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=(弦´矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.
按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于9米的弧田.

(1)計(jì)算弧田的實(shí)際面積;
(2)按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計(jì)算所得結(jié)果與(1)中計(jì)算的弧田實(shí)際面積相差多少平方米?(結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求的值;
(2)求的值;
(3)若是第三象限角,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m=(2cos x+2sin x,1),n=(cos x,-y),且mn.
(1)將y表示為x的函數(shù)f(x),并求f(x)的單調(diào)增區(qū)間;
(2)已知ab,c分別為△ABC的三個(gè)內(nèi)角AB,C對應(yīng)的邊長,若f=3,且a=2,bc=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中)的部分圖象如圖所示.

(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)求方程的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖像上相鄰兩對稱軸的距離為.
(1)若,求的遞增區(qū)間;
(2)若時(shí),的最大值為4,求的值.

查看答案和解析>>

同步練習(xí)冊答案