【題目】設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且滿足 ,f(1)=e,則x>0時(shí),f(x)( 。
A.有極大值,無(wú)極小值
B.有極小值,無(wú)極大值
C.既有極大值又有極小值
D.既無(wú)極大值也無(wú)極小值

【答案】D
【解析】解:∵f′(x)= = ,

令g(x)=ex﹣xf(x),

∴g′(x)=ex﹣(xf′(x)+f(x))

=ex(1﹣ ),

若x>1,則g′(x)>0,g(x)>g(1)=0,f(x)遞增,

若0<x<1,則g′(x)<0,g(x)>g(1)=0,f(x)遞增,

∴函數(shù)f(x)既無(wú)極大值又無(wú)極小值;

所以答案是:D.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(1+x)+alog2(1﹣x)(a∈R)的圖象關(guān)于y軸對(duì)稱.
(1)求函數(shù)f(x)的定義域;
(2)求a的值;
(3)若函數(shù)g(x)=x﹣2f(x)﹣2t有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(

A.計(jì)算數(shù)列{2n1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著霧霾日益嚴(yán)重,很多地區(qū)都實(shí)行了“限行”政策,現(xiàn)從某地區(qū)居民中,隨機(jī)抽取了300名居民了解他們對(duì)這一政策的態(tài)度,繪成如圖所示的2×2列聯(lián)表:

反對(duì)

支持

合計(jì)

男性

70

60

女性

50

120

合計(jì)


(1)試問(wèn)有沒(méi)有99%的把握認(rèn)為對(duì)“限行”政策的態(tài)度與性別有關(guān)?
(2)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的居民(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中反對(duì)的人數(shù),試寫(xiě)出ξ的分布列,并求出ξ的數(shù)學(xué)期望.
K2= ,其中n=a+b+c+d獨(dú)立性檢驗(yàn)臨界表:

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班為了提高學(xué)生學(xué)習(xí)英語(yǔ)的興趣,在班內(nèi)舉行英語(yǔ)寫(xiě)、說(shuō)、唱綜合能力比賽,比賽分為預(yù)賽和決賽2個(gè)階段,預(yù)賽為筆試,決賽為說(shuō)英語(yǔ)、唱英語(yǔ)歌曲,將所有參加筆試的同學(xué)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖,其中后三個(gè)矩形高度之比依次為4:2:1,落在[80,90)的人數(shù)為12人.

(Ⅰ)求此班級(jí)人數(shù);
(Ⅱ)按規(guī)定預(yù)賽成績(jī)不低于90分的選手參加決賽,已知甲乙兩位選手已經(jīng)取得決賽資格,參加決賽的選手按抽簽方式?jīng)Q定出場(chǎng)順序.
(i)甲不排在第一位乙不排在最后一位的概率;
(ii)記甲乙二人排在前三位的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x3 圍成的區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ +alnx.
(Ⅰ)若f(x)在區(qū)間[2,3]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)f′(x)的圖象為曲線C,曲線C上的不同兩點(diǎn)A(x1 , y1)、B(x2 , y2)所在直線的斜率為k,求證:當(dāng)a≤4時(shí),|k|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判.每局比賽結(jié)束時(shí),負(fù)的一方在下局當(dāng)裁判,假設(shè)每局比賽中,甲勝乙的概率為 ,甲勝丙、乙勝丙的概率都是 ,各局比賽的結(jié)果相互獨(dú)立,第一局甲當(dāng)裁判.
(1)求第3局甲當(dāng)裁判的概率;
(2)記前4局中乙當(dāng)裁判的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案