20.已知x與y之間的一組數(shù)據(jù)如下表:
 x 1 2 3 4
 y 2 2 3 5
則y與x的線性回歸方程$\widehat{y}$=$\widehat$x$+\widehat{a}$過點( 。
A.(2.5,2)B.(2.5,3)C.(2,2)D.(2,3)

分析 由圖表求出樣本中心點得答案.

解答 解:由圖表可知,$\overline{x}=\frac{1+2+3+4}{4}=2.5$,$\overline{y}=\frac{2+2+3+5}{4}=3$,
由線性回歸直線方程恒過樣本中心點可知,
線性回歸方程$\widehat{y}$=$\widehat$x$+\widehat{a}$過點(2.5,3).
故選:B.

點評 本題考查線性回歸方程,明確線性回歸方程恒過樣本中心點是關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$|\overrightarrow a|=4,\overrightarrow b=(-1,\sqrt{3})$.
(1)若$\overrightarrow a∥\overrightarrow b$,求$\overrightarrow a$的坐標;
(2)若$\overrightarrow a$與$\overrightarrow b$的夾角為120°,求$|\overrightarrow a-\overrightarrow b|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等差數(shù)列{an}中,若a12=0,則有a1+a2+…+an=a1+a2+…+a23-n(n<23,n∈N*)成立,類比上述性質(zhì),在等比數(shù)列{bn}中,若b8=1,則有b1•b2…bn=b1•b2…b15-n(n<15,且n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$=(4,m),$\overrightarrow$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.甲、乙兩人組成“風(fēng)云隊”參加某電視臺舉辦的漢字聽寫大賽活動,每一回合由主持人說出一個詞語,并由兩們選手各自按照要求規(guī)則聽寫,在每一回合中,如果兩人都寫對,則“風(fēng)云隊”得2分;如果只有一個寫對,則“風(fēng)云隊”得1分;如果兩人都沒寫對,則“風(fēng)云隊”得0分.已知甲每一回合寫對的概率是$\frac{3}{4}$,乙每一回合寫對的概率是$\frac{1}{2}$;每一回合中甲、乙寫對與否互不影響,各回合結(jié)果互不影響,假設(shè)“風(fēng)云隊”參加了兩個回合的活動.
(1)求“風(fēng)云隊”在兩個回合中至少寫對3個詞語的概率;
(2)X表示“風(fēng)云隊”兩個回合得分之和,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在(x+1)(x-2)5的展開式中,x4項的系數(shù)是30(用具體數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知an=2n-1(n∈N*).
(Ⅰ)求證:$\sqrt{a_n}+\sqrt{{a_{n+3}}}<\sqrt{{a_{n+1}}}+\sqrt{{a_{n+2}}}$;
(Ⅱ)若不等式2n+1>nan+n+2在n≥n0時恒成立,求最小正整數(shù)n0,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某校田徑隊共有男運動員45人,女運動員36人.若采用分層抽樣的方法在全體運動員中抽取18人進行體質(zhì)測試,則抽到的女運動員人數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若隨機變量ξ的分布列為P(ξ=k)=ak(k=1,2,3),則實數(shù)a=$\frac{1}{6}$;數(shù)學(xué)期望Eξ=$\frac{7}{3}$.

查看答案和解析>>

同步練習(xí)冊答案