已知單位向量
a
=(x,y),
b
=(2,-1),若
a
b
,則|2x+y|的值為
 
考點(diǎn):數(shù)量積判斷兩個平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:由向量的垂直和模長公式可得x和y的方程組,解方程組代入計算可得.
解答: 解:∵
a
=(x,y),
b
=(2,-1),
a
b
可得2x-y=0,①
a
=(x,y)為單位向量,
∴x2+y2=1,②
聯(lián)立①②可得
x=
5
5
y=
2
5
5
x=-
5
5
y=-
2
5
5
,
∴|2x+y|=
4
5
5

故答案為:
4
5
5
點(diǎn)評:本題考查斜率的垂直和模長公式,涉及方程組的解法,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O(0,0),P(3,4),將向量
OP
繞點(diǎn)O按逆時針旋轉(zhuǎn)
π
4
后得到向量
OQ
,則點(diǎn)Q的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
6
x
-
5
x2
≥1},集合B={x||x-
(a+1)2
2
|≤
(a-1)2
2
,a∈R},若A?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)乒乓球團(tuán)體比賽的規(guī)則如下:進(jìn)行5場比賽,除第三場為雙打外,其余各場為單打,參賽的每個隊選出3名運(yùn)動員參加比賽,每個隊員打兩場,且第1、2場與第4、5場不能是某個運(yùn)動員連續(xù)比賽.某隊有4名乒乓球運(yùn)動員,其中A不適合雙打,則該隊教練安排運(yùn)動員參加比賽的方法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),且f(x+1)•f(x-1)=1,f(x)>0恒成立,則f(2011)=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m為常數(shù),函數(shù)f(x)=
m-2x
1+m•2x
為奇函數(shù).
(Ⅰ)求m的值;
(Ⅱ)若m>0,試判斷f(x)的單調(diào)性(不需證明);
(Ⅲ)當(dāng)m>0時,若存在x∈[-2,2],使得f(ex+x-k)+f(2)≤0能成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)范圍內(nèi)因式分解:x2-7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=cosxsinx的圖象向左平移m個單位長度后,所得到的圖象關(guān)于y軸對稱,則正數(shù)m的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案